
Intel Confidential — Do Not Forward

New Age Graphics on Android x86.

Adding high-end graphical effects to GT Racing 2 on Android x86.

Adrian Voinea (Gameloft)

Steve Hughes (Intel)

Legal
Copyright © 2014 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third
parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole
risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product
roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to
http://www.Intel.com/performance

Iris™ graphics is available on select systems. Consult your system manufacturer.

Intel, Intel Inside, the Intel logo, Intel Core and Iris are trademarks of Intel Corporation in the United States and other countries.

2

GT Racing 2 Intel
Introduction

 Gameloft, a leading global publisher with key franchises like Asphalt, Despicable Me, Ice

Age Village, Modern Combat decided to join forces with Intel to bring one optimized

version of its latest simulation racing game: GT Racing 2

 Our goal was to push their latest hardware, Baytrail for Android to the maximum of its

capacities and provide consumers with one of the best playable performance.

 Working on unreleased platform is quite a challenge, but exactly in line with what we do

at Gameloft

 In the end, with Intel’s support, we manage to deliver a top quality version of this racing

title, which you can find only on x86.

3

GT Racing 2 Intel
Introduction

 This is the end result

 Original Version GTR2 Intel Enhanced

4

GPA Screenshot

GT Racing 2 Intel
Special Effects - Depth of Field

 Active in Main Menu

 Puts emphasis on the car displayed by blurring further objects

 Two blur sub passes, vertical and horizontal, that are merged together in the final

composition step

5

GT Racing 2 Intel
Special Effects - Depth of Field

 Horizontal blur applied to the initial framebuffer

 Output is ¼ of native resolution

6

GPA Screenshot

GT Racing 2 Intel
Special Effects - Depth of Field

 Vertical blur is applied to the output buffer from the horizontal blur step

7

GPA Screenshot

GT Racing 2 Intel
Special Effects - Depth of Field

The Depth of Field shader uses a depth difference to control the blur

 lowp vec3 color = texture2D(texture0, vCoord0).rgb; //unaltered render target

 lowp vec3 blur = texture2D(texture3, vCoord0).rgb; //blurred render target

 lowp float depthDiff = abs(depth - focusDepth); //calculate the depth difference between

a chosen focus point

 depthDiff += smoothstep(0.24, 1.0, length(focusPoint - vCoord0)); //take in consideration

only the depth value greater then 0.24

 lowp vec3 dofColor = mix(color, blur, depthDiff); //color * (1 - depthDiff) + blur *

depthDiff

8

GT Racing 2 Intel
Special Effects - Depth of Field

9

GPA Screenshot

GT Racing 2 Intel
Special Effects - Depth of Field

 Horizontal blur pass: 4.5ms

 Vertical blur pass: 0.66ms

 Final compose: 5.1ms

 Total: 10.26 ms to apply for DoF algorithm

10

GPA Screenshot

GT Racing 2 Intel
Special Effects – Heat Haze

 Heat haze distortion on the start of every race

 Gives the effect of hot air rising from the track

11

GT Racing 2 Intel
Special Effects – Heat Haze

12

 Starting from the car coordinates, an alpha mask

is generated.

GPA Screenshot

GT Racing 2 Intel
Special Effects – Heat Haze

13

 A distortion texture is applied over the mask obtained

GPA Screenshot

Although subtle, the heat haze

gives a nice heating effect at the

beginning of each race.

Cost: 3.9ms

GT Racing 2 Intel
Special Effects
Heat Haze

14
GPA Screenshot

GT Racing 2 Intel
Special Effects - Lightshafts

 Improves game immersion in sunny environments

 It requires several post-processing passes, and the effect can be quite expensive

15

GT Racing 2 Intel
Special Effects – Lightshafts

 The base render target which will contain the sun will be occluded by the scene objects.

 We need to render just to sun, so we separate blending equations for transparent objects:

 Solids output 0 to the alpha channel

 Transparent use separate blending equations:

– The color is preserved

– The alpha information is not affecting the desired result from our render target

16

GT Racing 2 Intel
Special Effects – Lightshafts

Radial blur pass

 Applying radial blur starting from the sun position

 The effect requires three passes to smooth out the rays

 This is achieved efficiently for mobiles, by keeping a small sized RTT and using the same

shader pair

 All three passes take ~4.4ms

17 GPA Screenshot GPA Screenshot GPA Screenshot

GT Racing 2 Intel
Special Effects – Lightshafts

18

Radial blur pass
 In the vertex shader , we are computing texture coordinates for the radial blur

 mediump vec2 center = vec2(center_x, center_y); //sun position in uv coordinates

 mediump vec2 dir = (center - vCoord0) * scale; //radial blur direction

 mediump vec2 SampleUVDelta = (dir * blurScale) / 8.0; //offset for radial blur

 mediump float blurOffset = 0.01;

 vCoord0 = vCoord0 + (dir * blurOffset);

 vCoord1 = vCoord0 + SampleUVDelta;

 vCoord2 = vCoord1 + SampleUVDelta;

 vCoord3 = vCoord2 + SampleUVDelta;

 vCoord4 = vCoord3 + SampleUVDelta;

 vCoord5 = vCoord4 + SampleUVDelta;

 vCoord6 = vCoord5 + SampleUVDelta;

 vCoord7 = vCoord6 + SampleUVDelta;

GT Racing 2 Intel
Special Effects – Lightshafts

Radial blur pass

 Inside the fragment shader, we are using the previously computed coordinates to apply radial blur algorithm

 color += texture2D(texture0, vCoord1).rgb;

 color += texture2D(texture0, vCoord2).rgb;

 color += texture2D(texture0, vCoord3).rgb;

 color += texture2D(texture0, vCoord4).rgb;

 color += texture2D(texture0, vCoord5).rgb;

 color += texture2D(texture0, vCoord6).rgb;

 color += texture2D(texture0, vCoord7).rgb;

 gl_FragColor.rgb = color / 8.0;

19

GT Racing 2 Intel
Special Effects – Lightshafts

20

The end result is achieved

by composing the Radial

Blur result and the original

color buffer

GT Racing 2 Intel
Special Effects – Lightshafts

 First pass: 1.6 ms

 Second pass: 1.4 ms

 Third pass: 1.4 ms

 Compose: 4 ms

 Total: 8.4 ms

21

GPA Screenshot

GT Racing 2 Intel
Special Effects – Bloom

 Simulates the image of artifact of real-world camera, producing an immersive environment

during the races.

 This effect is achieved by composing the image with a blurred and brightness filtered copy of

itself.

22

GT Racing 2 Intel
Special Effects – Bloom

 First step is to take the original framebuffer and apply a bright pass filter

 This will result in the parts that will have their white color enhanced

23

GPA Screenshot

GT Racing 2 Intel
Special Effects – Bloom

 The high filter pass uses an approximation formula, that allows only bright colors to pass:

24

 f(x) = (-3 * (x-1)² + 1) * 2

GT Racing 2 Intel
Special Effects – Bloom

 Second step, is to apply an horizontal and then a vertical blur

 The bright pass filter output is used as input for the blur part

1st Blur – Horizontal Blur 2nd Blur – Vertical Blur

25

GPA Screenshot GPA Screenshot

GT Racing 2 Intel
Special Effects – Bloom

 In the end, we compose the blur output with the initial framebuffer, with a low-enough cost

for mobile devices

26

GPA Screenshot

GT Racing 2 Intel
Special Effects – Bloom

Bloom prost-processing effect cost

 Bright-pass filter: 1.4ms

 Horizontal blur pass: 0.57ms

 Vertical blur pass: 0.67ms

 Final compose, bloom: 2.17ms

 Total: 4.81ms

27

GPA Screenshot

GT Racing 2 Intel
Special Effects

28

Baytrail: Cutting Edge HW!

29

Optimization opportunities

30

Tools used to optimize GTRacing 2

Frame Analyzer

• Observing & collecting performance metrics like

fps, power consumption, CPU / GPU Load, GL Stats

Platform Analyzer

• Observing GPU performance

• Detecting GPU bottlenecks

System Analyzer

• Observing & collecting performance

metrics like fps, power consumption, CPU /

GPU Load,

• GL Stats

• Capturing frames for Frame Analyzer or

Platform Analyzer

Optimization opportunities

31

Step 1: Compare CPU and GPU load with System Analyzer

Observations:

• GPU load around 90+ percent

• Fairly low CPU load

• Application is clearly GPU bound

• Most performance benefit can therefore be found

in GPU pipeline.

• Proceed with Frame Analyzer

CPU vs. GPU loads in GTR2

Activity:

• Dumped csv files of real time metrics (“App CPU Load %” and “GPU Busy %”) from System Analyzer

• Loaded into Excel to present graph

Optimization opportunities

32

Pipeline Issues identified with GPA

 Watch for unnecessary glClear calls.

• Render targets on tablet devices are large, so

calls to glClear() can be expensive.

• Very easy to leave unnecessary RT clears in the

pipeline (purple ergs).

• GPA Identified about 5ms worth of RT clears

which could be removed.

Activity:

• Dump frame from System Analyzer and open in Frame Analyzer

• Clear calls show up as purple on erg graph

• I use GPU Duration on both graph axes to really make these stand out

Optimization opportunities

33

Pipeline Issues identified with GPA

 Big ergs are always worth look at :

• Game was originally rendered half size

then up-sampled (yellow erg)

• Very expensive process, almost worth

rendering game full size instead – which in

fact we ended up doing.

Activity:

• Dump frame from System Analyzer and open in Frame Analyzer

• Go for the largest erg’s. See them as low hanging fruit. Identify erg function from shaders, geometry etc. and make judgment call.

• I use GPU Duration on both graph axes to really make these stand out

Optimization opportunities

34

Pipeline Issues identified with GPA

 Not all big ergs are wrong ergs:

• Rendered objects A, B, C, and D are very

expensive

• However, these are cars, and are key to the game

• Great example of spending cycles on the bits that

matter in a frame

Activity:

• Dump frame from System Analyzer and open in Frame Analyzer

• Select erg and examine textures or Geometry to identify object rendered by erg

Optimization opportunities

35

Pipeline Issues identified with GPA

Its worth looking at small ergs too:

• Rendered objects B and C, are blur passes on data

for effects, I expected lower cost for these

• Closer look showed these were actually full size

RT’s

• Reducing the RT size to ¼ native resulted in 2-

3ms saving on frame time.

Activity:

• Dump frame from System Analyzer and open in Frame Analyzer

• Examine Geometry and textures to deduce erg action

Optimization opportunities

36

Pipeline Issues identified with GPA

CPU vs. GPU clipping

• Track render shows no CPU clipping

• All primitives from track model are sent to clipper

• All 1958 prims are put thru

• Almost 1K prims are clipped

Activity:

• Dump frame from System Analyzer and open in Frame Analyzer

• Examine Geometry and Details tab to see stats

Model View in GPA Frame Analyzer
Cut from GPA Frame Analyzer Details tab

• Clipping models on CPU would save GPU cycles

• Unfortunately, clipping not possible in the pipeline

• One that got away, but logged for next time.

Optimization opportunities

37

Pipeline Issues identified with GPA

Activity:

• Dump frame from System Analyzer and open in Frame Analyzer

• Find shader responsible for effect

• Edit shaders to experiment with effects without recompiling the game!

Sometimes a fresh eye can help:

• Some observations suggested bloom

effect was “washed out”

• Investigation showed that the bloom math

was overly complex

• And it was loading the render target

What we suggested:

• Replacing bloom with simpler algorithm

• Using additive blend mode instead of

loading the RT to alter it

• Prototyped in GPA!

Optimization opportunities

38

Power consumption: Frame clamp can be your friend:

Activity:

• Dump CSVs of Current or Power discharge from System Analyzer

• Load into excel & make a graph

• Easy really!

Why looking at power draw is important:

• Improves available game play time

• Longer times between charging

• Fewer complaints – no one likes apps that

drain the battery

• Save the Planet!

Adding x86 Build Target to your Android Game

39

• Not very different to ArmV7a
• 32 bit word size

• Little-endian storage

• HW FPU

• Not usually anything to do about textures

• Minor differences
• Need to watch alignment (aligned vs packed).

• Any low level vector math needs translating (NEON to SSE)

• Need to specify tool chain in Application.mk

• Easy runtime and compile time checks to detect platform if you need them

• Compiler flags (at O2)

• -march=atom

• -mssse3

• -finline-limit (about 300 is good for x86)

• Common starting issues
• Prebuilt libs will need recompiling

• Textures may need converting

• In all – not too bad a job!

Summary:
Optimization is the key to “Next Level” Graphics on Mobile devices!

40

• Need high frame rate to allow room for effects like the ones we’ve seen.

• A 5ms effect means you need to shrink render time at 30fps by 15% to fit it in.

• Find those extra ms by profiling hard with GPA and staying on the look out for

savings at all times.

• Remember: GPA is not just a PC tool any more

• Get the latest at http://software.intel.com/en-us/vcsource/tools/intel-gpa

http://software.intel.com/en-us/vcsource/tools/intel-gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa

41

Ready for More? Look Inside™.

42

Keep in touch with us at GDC and beyond:

• Game Developer Conference
Visit our Intel® booth #1016 in Moscone South

• Intel University Games Showcase
Marriott Marquis Salon 7, Thursday 5:30pm
RSVP at bit.ly/intelgame

• Intel Developer Forum, San Francisco
September 9-11, 2014
intel.com/idf14

• Intel Software Adrenaline
@inteladrenaline

• Intel Developer Zone
software.intel.com
@intelsoftware

