
Achieving the Best Performance with Intel Graphics
Tips, Tricks, and Clever Bits
Blake Taylor, Graphics Software Development and Validation (GSDV)

GDC 2014

Agenda

 Application

 Platform

 IA Graphics

 Sampler

 Fillrate

 Arithmetic Logic

 Geometry

 Scaling Your Game

 Conclusion

2

Application
Performance starts at the top

3

Efficient GPU Programming

4

Making the most of the pipeline!

 Optimizations within the IA software stack

 Application specific

 Generic

 Greatest impact from application optimization

 Meet your friendly AE!

Application

Driver

GPU

Low

High

Scope of Optimizations

Draw

Draw…Frame

Big Picture!

Tooltip!

- Use GPA™ to find and optimize GPU hotspots

Draw Dispatching and Resource Update

Be conscious of memory access patterns

of dispatched operations

 3D / 2D operation scheduling

 State / shader changes

 Resource locality

5

Resource A Resource B

Draw 0 Draw 1

Resource A

Draw 2

Vs.

Resource A Resource A

Draw 0 Draw 1 (2)

Resource B

Draw 2 (1)

Large Surfaces (high latency)

Resource A Resource B

Draw 0 Draw 1

Resource A

Draw 2

Small Surfaces (low latency)

Write to same RT region

Platform
More than just the sum of it’s parts…

6

Platform

7

Graphics is only part of the puzzle

 Unique architecture characteristics

 Power & performance

 Memory hierarchy

 Paired platform

 CPU

 System memory

 Other constraints

 Thermal

 Power

Memory

CPU GPU

Un-core

Package

Display Peripherals

Platform

CPU Optimization

Relationship between CPU / GPU

 CPU or GPU bottleneck

 CPU can limit GPU

 Whaaa?....

8

0

2

4

6

8

10

12

0 5 10 15

W
a
tt

s

Power (15W Total)

CPU

GPU

Uncore

0

200

400

600

800

1000

1200

1400

0 5 10 15

M
H

z

Frequency (GPU Peak 1.15Ghz)

CPU

GPU
Tooltip!

- Use VTune™ to find and optimize CPU hotspots

Cache Locality Is King

Optimize memory accesses for both CPU and GPU

 Memory bandwidth bound

 Hierarchy varies with platform

 Optional CPU + GPU Caches

– Last Level Cache (LLC)

– Embedded DRAM (eDRAM)

 GPU

9

GPU Caches

CPU + GPU

GPU
Memory Interface

DRAM

Last Level Cache eDRAM

Varying availability

IA Graphics
This is what you came for right?

10

Architecture

11

Architectural components

 Non-Slice

 Fixed function

– Transformation

– Clipping

 Slice

 Slice common

– Rasterization

– Shader dispatch

– Color back-end

 Sub-slice(s)

– Shader execution

Fixed Function

Slice

Shader Execution
Non-Slice

Sub-Slice

Shader Execution

Sub-Slice

Rasterization … Color back-end

Slice Common

M
e

m
o

ry
 In

te
rf

a
ce

Architecture Scaling

12

Scaling Components

 Slice

 Parallel primitive processing

 Sub-slice

 Parallel span processing

Prim 0

Ex. Post Clip Primitive Processing (4x4 pixel spans)

Prim 1

Slice Scaling (1 – N Slices)

…

Sub-Slice Scaling (1 – N Sub-Slices)

…..

Sampler

13

1 Sampler Per Sub-Slice

 Local texture cache (Tex$)

 Backed by common L3$

Fixed Function

Slice

Non-Slice

Sub-Slice

Sub-Slice

Slice Common

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$

0

0.2

0.4

0.6

0.8

1

1 2 4 N

T
h

ro
u

g
h

p
u

t

Sub-Slices

Ex. Synthetic Throughput vs. Sub-slice Count

Architectural Peak

Sampler Performance

14

Remember Cache Locality? 

 Throughput

 Format

 Sampling pattern

 Poor access pattern

 Increased memory b/w

 Increased latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 N

T
h

ro
u

g
h

p
u

t

Sub-Slices

Good

Bad

Ex. Synthetic Throughput Good vs. Bad Access Pattern
Architectural Peak

Texture Compression

15

Utilize as much as possible!

 Offline compression

 Dynamic compression

BC1 Error with BC1 BC7 Error with BC7

Original Surface

Fillrate

16

Per Slice-Common

 Pixel Back-End

 Color Cache (RCC$)

Fixed Function

Slice

Non-Slice

Sub-Slice

Sub-Slice

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$

0

0.2

0.4

0.6

0.8

1

1 2 N

F
ill

ra
te

Slices

Ex. Synthetic Fillrate vs. Slice Count

Architectural Peak

Pixel
Back-End

RCC$

Rasterizer
Early Z

Early STC

Depth$
Stencil$

Slice Common

Fillrate Performance

17

Pumping out color

 Throughput

 Format

 Dimension + region

 Other factors

 Rasterization

 Early Z/STC

 Pixel Shader Execution

 Late Z/STC

 Blend function + mode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 N

F
ill

ra
te

Sub-Slices

Non-Blended

Blended

Ex. Synthetic Fillrate Blended vs. Non-Blended

Architectural Peak

18

Surface Format

Select the appropriate format for color range

 Intermediate / final render targets

 Cause

 Higher precision format chosen un-necessarily

 Effect

 Reduced fill rate

 Increased memory bandwidth

HDR (R16G16B16A16)

HDR (R10G10B10A2)

Arithmetic Logic

19

Block Per Sub-Slice

 Execution Units (EUs)

 Instruction Cache (IC$)

Fixed Function

Non-Slice

Sub-Slice

Sub-Slice

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$

0

0.2

0.4

0.6

0.8

1

1 3 6

P
e

rf
o

rm
a

n
ce

Sub-Slices

Ex. Synthetic EU Throughput vs. Sub-Slice

Architectural Peak

Pixel
Back-End

RCC$

Rasterizer
Early Z

Early STC

Depth$
Stencil$

L1
IC$

Data Port

EU

Slice Common

EU EU EU

EU EU EU EU

L1
IC$

Data Port

EU EU EU EU

EU EU EU EU

Arithmetic Logic Performance

20

Algorithmic Complexity

 Control flow

 Math

 Extended math

 Max concurrent registers

0

0.2

0.4

0.6

0.8

1

MAX LRP CMP LOG EXP POW ADD MUL MAD

P
e

rf
o

rm
a

n
ce

Synthetic Relative Performance - EU Operations

0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
ce

Synthetic SIMD8 vs. SIMD16

SIMD16

SIMD8

Shader Optimization

Optimal code based on purpose

 Shader scaling

 The case of the generic shader

 Generation of un-used outputs 

21

vs_3_0
def c17, 2, -1, 0, 1
def c18, 1.44269502, 0.00999999978, -1.44269502, 0
dcl_position v0
dcl_normal v1
dcl_color v2
dcl_position o0
dcl_texcoord o1
dcl_texcoord1 o2

dcl_texcoord2 o3.xyz
dcl_texcoord3 o4.xyz
dcl_color o5
dcl_texcoord4 o6
dcl_texcoord5 o7
dcl_texcoord6 o8.xy
mul r0, c5, v0.y
mad r0, v0.x, c4, r0
mad r0, v0.z, c6, r0
mad o0, v0.w, c7, r0
.. 76 instructions…
mov o7, v2

vs_3_0
dcl_position v0
dcl_position o0
mul r0, c5, v0.y
mad r0, v0.x, c4, r0
mad r0, v0.z, c6, r0
mad o0, v0.w, c7, r0

0

50000

100000

150000

Cycles

Original

Optimized

0

200

400

600

800

1000

Cache Entries

Original

Optimized

Geometry

22

Single Non-Slice

 Fixed Function

 VS

 HS

 TE

 DS

 GS

 SOL

 Clipper

 Setup Front-End

Non-Slice

Sub-Slice

Sub-Slice

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$
Pixel

Back-End
RCC$

Rasterizer
Early Z

Early STC

Depth$
Stencil$

L1
IC$

Data Port

EU

Slice Common

EU EU EU

EU EU EU EU

L1
IC$

Data Port

EU EU EU EU

EU EU EU EU

VF

VS

HS

TE

DS

GS

SOL

CL

SFE

T
D

G

Optimizing Geometry for Algorithmic Complexity

Optimal definitions for a single piece of

geometry

 Quality scaling with platform

 Purpose

 Lighting, depth, animation…

23

Model with Hard Edges

Model with Soft Edges
Before (Hard Edge) After (Soft Edge)

Duplicate Vertex

Merged Vertex + Normal

Ex. Edge Softening

Optimizing Primitive Ordering

24

Primitive scheduling within a single draw

 Ordering primitives for both locality and latency

 Two cases

 View dependent

 View independent

 Sample example (HDAO10.1)

 Primitive dispatch color coded (green -> red)

 2%-13% performance gain

Original Ordering

View Dependent Ordering

Scaling Your Game
Burn baby burn, heat inferno…

25
Lost Planet 2 : Images courtesy of Capcom

Why do you care?

Wide Range of Platforms + CPU + GPU

 Each with unique performance characteristics

 All of which the user hopes to run your game

 And run it well 

26

Better selling point? more platforms + happy users == more money? $$$ 

How Well Does Your Game Scale?

 Created a game

 Quality settings

27

Tablet

Low

Phone

Ultra Low?

Mobile

Medium

Desktop

Ultra

Memory Bandwidth

28

It’s all about the memory.. baby

 Will vary greatly with platform

 Why do you care?

 Read from memory

 Write to memory

Sharp turn ahead!

Low

High

M
e

m
o

ry
 B

a
n

d
w

id
th

Goal

- Establish memory ceiling (budget)

Sampler Throughput

29

Varies with architecture and platform

 Measure all use cases

 Dimension

 Format

 Filtering mode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03 0.25 0.3 6 10 16
T

h
ro

u
g

h
p

u
t

Memory Footprint (MB)

32bit (Point/Bilinear)

32bit (Trilinear)

Ex. Synthetic Sampler Throughput 32bit Use Cases

Architectural Peak

Goal

- Select optimal format & dimension

Fill Rate

30

Multiple surface types

 Render target

 Format

 Dimension

 Blended / Non-blended

 Depth

 Read +/ Write

 Stencil

 Read +/ Write

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RT 32bit RT 32bit

(Blend)

Z Fail Z Pass STC Test

P
e

rf
o

rm
a

n
ce

Synthetic Relative Performance – Fullscreen Primitive

Goal

- Understand relative performance

- Optimal format, dimension, and algorithm

Geometry Throughput

31

Fixed function bandwidth and Arithmetic Logic

 Fixed function

 Clip / Cull

 Rasterization

 Geometry transformation

 ALU

Goal

- Optimal geometry and algorithm 0

0.5

1

MAX LRP CMP LOG EXP POW ADD MUL MAD

P
e

rf
o

rm
a

n
ce

Synthetic Relative Performance - EU Operations

Vs.

Ex. Geometry Selection Low vs. High Throughput

Conclusion
Wrapping it all up in a bow..

32

THE END

Looking Forward

33

Same game for desktop to phone

 Wide array of platforms

 Adaptable quality settings

 Scaling algorithms

 Optimization

Thanks for attending!

And everything in-between...

Questions?

34

Contact Information

 E-mail : robert.b.taylor@intel.com

Ready for More? Look Inside™.

35

Keep in touch with us at GDC and beyond:

• Game Developer Conference
Visit our Intel® booth #1016 in Moscone South

• Intel University Games Showcase
Marriott Marquis Salon 7, Thursday 5:30pm
RSVP at bit.ly/intelgame

• Intel Developer Forum, San Francisco
September 9-11, 2014
intel.com/idf14

• Intel Software Adrenaline
@inteladrenaline

• Intel Developer Zone
software.intel.com
@intelsoftware

Up Next…

37

12:30 – 1:30

Realistic Cloud Rendering using Pixel Synchronization

Presented by:

 Egor Yusov - Intel

