

Or…
Yet another privileged CIS white

male in the AAA space talking
abut data.

What is good code?

Our role is not to write "good" code. Our role is to solve our problems
well.

With fixed hardware resources, that often means reducing waste or at
least having the potential to reduce waste (i.e. optimizable) so that we
can solve bigger and more interesting problems in the same space.

"Good" code in that context is the code that was written based on a
rational and reasoned analysis of the actual problems that need solving,
hardware resources, and available production time.

i.e. At the very least not using the "pull it out your ass" design method
combined with a goal to "solve all problems for everyone, everywhere."

Can’t the compiler do it?

A little review…

http://www.agner.org/optimize/instruction_tables.pdf

(AMD Piledriver)

http://www.agner.org/optimize/instruction_tables.pdf

(AMD Piledriver)

http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf

http://www.gameenginebook.com/SINFO.pdf

The Battle of North Bridge

L1

L2

RAM

L2 cache misses/frame
(Most significant component)

http://deplinenoise.wordpress.com/2013/12/28/optimizable-code/

2 x 32bit read; same cache line = ~200

Float mul, add = ~10

Let’s assume callq is replaced. Sqrt = ~30

Mul back to same addr; in L1; = ~3

Read+add from new line
= ~200

Time spent waiting for L2 vs. actual work

~10:1

Time spent waiting for L2 vs. actual work

~10:1

This is the compiler’s space.

Time spent waiting for L2 vs. actual work

~10:1

This is the compiler’s space.

Compiler cannot solve the most
significant problems.

See also:

https://plus.google.com/u/0/+Dataorienteddesign/posts

Today’s subject:
The 90% of problem space we

need to solve that the compiler
cannot.

(And how we can help it with the 10% that it can.)

Simple, obvious things to look for
+ Back of the envelope calculations

 = Substantial wins

What’s the most common
cause of waste?

What’s the cause?

http://www.insomniacgames.com/three-big-lies-typical-design-failures-in-game-programming-gdc10/

http://deplinenoise.wordpress.com/2013/12/28/optimizable-code/

So how do we solve for it?

L2 cache misses/frame
(Don’t waste them!)

Waste 56 bytes / 64 bytes

Waste 60 bytes / 64 bytes

90% waste!

Alternatively,
Only 10% capacity used*

* Not the same as “used well”, but we’ll start here.

12 bytes x count(5) = 72

12 bytes x count(5) = 72

4 bytes x count(5) = 20

12 bytes x count(32) = 384 = 64 x 6

4 bytes x count(32) = 128 = 64 x 2

12 bytes x count(32) = 384 = 64 x 6

4 bytes x count(32) = 128 = 64 x 2

(6/32) = ~5.33 loop/cache line

12 bytes x count(32) = 384 = 64 x 6

4 bytes x count(32) = 128 = 64 x 2

Sqrt + math = ~40 x 5.33 = 213.33 cycles/cache line
(6/32) = ~5.33 loop/cache line

12 bytes x count(32) = 384 = 64 x 6

4 bytes x count(32) = 128 = 64 x 2

Sqrt + math = ~40 x 5.33 = 213.33 cycles/cache line
(6/32) = ~5.33 loop/cache line

+ streaming prefetch bonus

12 bytes x count(32) = 384 = 64 x 6

4 bytes x count(32) = 128 = 64 x 2

Sqrt + math = ~40 x 5.33 = 213.33 cycles/cache line
(6/32) = ~5.33 loop/cache line

+ streaming prefetch bonus

Using cache line to capacity* =
10x speedup

* Used. Still not necessarily as
efficiently as possible

Sqrt + math = ~40 x 5.33 = 213.33 cycles/cache line
(6/32) = ~5.33 loop/cache line

+ streaming prefetch bonus

In addition…
1. Code is maintainable

2. Code is debugable
3. Can REASON about cost of change

Sqrt + math = ~40 x 5.33 = 213.33 cycles/cache line
(6/32) = ~5.33 loop/cache line

+ streaming prefetch bonus

In addition…
1. Code is maintainable

2. Code is debugable
3. Can REASON about cost of change

Ignoring inconvenient facts is not engineering;
It’s dogma.

Let’s review some code…

http://yosoygames.com.ar/wp/2013/11/on-mike-actons-review-of-ogrenode-cpp/

(1) Can’t re-arrange memory (much)

Limited by ABI

Can’t limit unused reads

Extra padding

http://stackoverflow.com/questions/916600/can-a-c-compiler-re-order-elements-in-a-struct

In theory…

In practice…

In practice…

(2) Bools and last-minute decision making

bools in structs… (3) Extremely low information density

bools in structs… (3) Extremely low information density

How big is your cache line?

bools in structs… (3) Extremely low information density

How big is your cache line?

What’s the most commonly accessed data?

64b?

(2) Bools and last-minute decision making How is it used? What does it generate?

MSVC

MSVC

Re-read and re-test…

Increment and loop…

Re-read and re-test…

Increment and loop…

Why?

Super-conservative aliasing rules…?
Member value might change?

What about something more aggressive…?

Test once and return…

What about something more aggressive…?

Okay, so what about…

…well at least it inlined it?

MSVC doesn’t fare any better…

Don’t re-read member values or re-call functions when
you already have the data.

(4) Ghost reads and writes

BAM!

:(

(4) Ghost reads and writes

Don’t re-read member values or re-call functions when
you already have the data.

Hoist all loop-invariant reads and branches. Even super-
obvious ones that should already be in registers.

:)

:)

A bit of unnecessary branching, but more-or-less equivalent.

(4) Ghost reads and writes

Don’t re-read member values or re-call functions when
you already have the data.

Hoist all loop-invariant reads and branches. Even super-
obvious ones that should already be in registers.

Applies to any member fields especially.
(Not particular to bools)

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

Arrange memory by probability of access.

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

Hoist decision making to first-opportunity.

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

Maximize memory read value.

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

Maximize memory read value.

How can we measure this?

The story so far… How can you help the compiler?

(3) Extremely low information density

(3) Extremely low information density

What is the information density for is_spawn
over time?

(3) Extremely low information density

What is the information density for is_spawn
over time?

The easy way.

Zip the output
10,000 frames
= 915 bytes
= (915*8)/10,000
= 0.732 bits/frame

Zip the output
10,000 frames
= 915 bytes
= (915*8)/10,000
= 0.732 bits/frame

Alternatively,
Calculate Shannon Entropy:

(3) Extremely low information density

What does that tell us?

(3) Extremely low information density

What does that tell us?

Figure (~2 L2 misses each frame) x 10,000
If each cache line = 64b,
128b x 10,000 = 1,280,000 bytes

(3) Extremely low information density

What does that tell us?

Figure (~2 L2 misses each frame) x 10,000
If each cache line = 64b,
128b x 10,000 = 1,280,000 bytes

If avg information content = 0.732bits/frame
X 10,000 = 7320 bits
/ 8 = 915 bytes

(3) Extremely low information density

What does that tell us?

Figure (~2 L2 misses each frame) x 10,000
If each cache line = 64b,
128b x 10,000 = 1,280,000 bytes

If avg information content = 0.732bits/frame
X 10,000 = 7320 bits
/ 8 = 915 bytes

Percentage waste (Noise::Signal) =
(1,280,000-915)/1,280,000

What’re the alternatives?

(1) Per-frame…

(1) Per-frame…

1 of 512 (8*64) bits used…

(decision table)

(1) Per-frame…

1 of 512 (8*64) bits used…

(decision table)

(a) Make same decision x 512

(1) Per-frame…

1 of 512 (8*64) bits used…

(decision table)

(a) Make same decision x 512

(b) Combine with other reads / xforms

(1) Per-frame…

1 of 512 (8*64) bits used…

(decision table)

(a) Make same decision x 512

(b) Combine with other reads / xforms

Generally simplest.
- But things cannot exist in abstract bubble.
- Will require context.

(2) Over-frames…

(2) Over-frames…

i.e. Only read when needed

(2) Over-frames…

i.e. Only read when needed

e.g.

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

(Try it.)

How can we measure this?

Maximize memory read value.

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

(Try it.)

How can we measure this?

Maximize memory read value.

All these “code smells” can be viewed as symptoms
of information density problems…

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

(4) Ghost reads and writes

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

(4) Ghost reads and writes

Don’t re-read member values or re-call functions when
you already have the data.

The story so far… How can you help the compiler?

(1) Can’t re-arrange memory (much)

(2) Bools and last-minute decision making

(3) Extremely low information density

(4) Ghost reads and writes

The story so far… The compiler can’t help with:

Don’t re-read member values or re-call functions when
you already have the data.

Easy to confuse compiler, even within the 10% space

The story so far… How can you help the compiler?

Are we done with the constructor?

Are we done with the constructor?

(5) Over-generalization

Are we done with the constructor?

(5) Over-generalization

Complex constructors tend to imply that…
- Reads are unmanaged (one at a time…)

Are we done with the constructor?

(5) Over-generalization

Complex constructors tend to imply that…
- Reads are unmanaged (one at a time…)
- Unnecessary reads/writes in destructors

Are we done with the constructor?

(5) Over-generalization

Complex constructors tend to imply that…
- Reads are unmanaged (one at a time…)
- Unnecessary reads/writes in destructors
- Unmanaged icache (i.e. virtuals)
 => unmanaged reads/writes

Are we done with the constructor?

(5) Over-generalization

Complex constructors tend to imply that…
- Reads are unmanaged (one at a time…)
- Unnecessary reads/writes in destructors
- Unmanaged icache (i.e. virtuals)
 => unmanaged reads/writes
- Unnecessarily complex state machines (back to bools)

- E.g. 2^7 states

Are we done with the constructor?

(5) Over-generalization

Complex constructors tend to imply that…
- Reads are unmanaged (one at a time…)
- Unnecessary reads/writes in destructors
- Unmanaged icache (i.e. virtuals)
 => unmanaged reads/writes
- Unnecessarily complex state machines (back to bools)

- E.g. 2^7 states

Rule of thumb:
Store each state type separately

Store same states together
(No state value needed)

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

Imply more (wasted) reads because pretending you
don’t know what it could be.

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

Imply more (wasted) reads because pretending you
don’t know what it could be.

e.g. Strings, generally. Filenames, in particular.

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

Imply more (wasted) reads because pretending you
don’t know what it could be.

e.g. Strings, generally. Filenames, in particular.

Rule of thumb:
The best code is code that doesn’t need to exist.

Do it offline. Do it once.

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

(7) Over-solving (computing too much)

Compiler doesn’t have enough context to know
how to simplify your problems for you.

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

(7) Over-solving (computing too much)

Compiler doesn’t have enough context to know
how to simplify your problems for you.

But you can make simple tools that do…
- E.g. Premultiply matrices

Are we done with the constructor?

(5) Over-generalization

(6) Undefined or under-defined constraints

(7) Over-solving (computing too much)

Compiler doesn’t have enough context to know
how to simplify your problems for you.

But you can make simple tools that do…
- E.g. Premultiply matrices

Work with the (actual) data you have.
- E.g. Sparse or affine matrices

http://fgiesen.wordpress.com/2010/10/21/finish-your-derivations-please/

Is the compiler going to transform this…

Into this… for you?

http://realtimecollisiondetection.net/blog/?p=81

http://realtimecollisiondetection.net/blog/?p=44

While we’re on the subject…
DESIGN PATTERNS:

“

Okay… Now a quick pass
through some other functions.

(2) Bools and last-minute decision making

Step 1: organize
Separate states so you can reason about them

Step 1: organize
Separate states so you can reason about them

Step 2: triage
What are the relative values of each case
i.e. p(call) * count

Step 1: organize
Separate states so you can reason about them

Step 2: triage
What are the relative values of each case
i.e. p(call) * count

e.g. in-game vs. in-editor

Step 1: organize
Separate states so you can reason about them

Step 2: triage
What are the relative values of each case
i.e. p(call) * count

Step 3: reduce waste

~200 cycles x 2 x count

(back of the envelope read cost)

~200 cycles x 2 x count

~2.28 count per 200 cycles
= ~88

(back of the envelope read cost)

~200 cycles x 2 x count

~2.28 count per 200 cycles
= ~88

(back of the envelope read cost)

t = 2 * cross(q.xyz, v)

v' = v + q.w * t + cross(q.xyz, t)

~200 cycles x 2 x count

~2.28 count per 200 cycles
= ~88

(back of the envelope read cost)

t = 2 * cross(q.xyz, v)

v' = v + q.w * t + cross(q.xyz, t)

(close enough to dig in and
measure)

Apply the same steps recursively…

Apply the same steps recursively…

Step 1: organize
Separate states so you can reason about them

Root or not; Calling function with context can distinguish

Apply the same steps recursively…

Step 1: organize
Separate states so you can reason about them

Root or not; Calling function with context can distinguish

Apply the same steps recursively…

Step 1: organize
Separate states so you can reason about them

Apply the same steps recursively…

Step 1: organize
Separate states so you can reason about them

Can’t reason well about the cost from…

Step 1: organize
Separate states so you can reason about them

Step 1: organize
Separate states so you can reason about them

Step 2: triage
What are the relative values of each case
i.e. p(call) * count

Step 3: reduce waste

And here…

Before we close, let’s
revisit…

12 bytes x count(32) = 384 = 64 x 6

4 bytes x count(32) = 128 = 64 x 2

Good News:
Most problems are

easy to see.

Good News:
Side-effect of solving the 90%

well, compiler can solve the 10%
better.

Good News:
Organized data makes

maintenance, debugging and
concurrency much easier

Bad News:
Good programming is hard.
Bad programming is easy.

PS: Let’s get more women in
tech

