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Background
●Networking and client-server architecture 
●Serialization 
●Threading 
●C++ for example code
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● Massively threaded 
● One thread dedicated per request 
● Blocking 
● Easy to maintain!
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● Peak Concurrent Users 
● Massively threaded = high overhead 
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●Event driven model 
● IOCP 
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Problem Domain
●Problems with event driven? 
● No state! 
● Broken up code 
● Complicated error handling
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Topics
●Defining a request or packet interface 
● Leverages automatic programming 
● Sets a baseline for additional topics



Topics
●Safely and efficiently managing state



Topics
●Safely and efficiently managing state 
● Some requests require state



Topics
●Safely and efficiently managing state 
● Some requests require state 
● Efficiency gains for distributed problems



Topics
●Safely and efficiently managing state 
● Some requests require state 
● Efficiency gains for distributed problems 
● Foundation for final topic
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Topics
●Coroutines 
● What are they? 
● Approaches for implementation 
● How to make them safe
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Why C++?
●Design and Team constraints 
● Client using CryEngine 3 
● Design called for complicated, shared logic 
● No desire to duplicate code
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Why C++?
●Drawbacks 
● Minimal support for asynchronous operations 
● Minimal support for robust threading 
● Provides no stability/uptime guarantees
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Automatic Programming
●What is it? 
● Make your compiler do the work 
● A form of code compression 
● Can be cleanly integrated into your build
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● Provides an enormous productivity boost 
● MWO: 10x compression of server code! 
● 100k lines expands to ~1 million lines of C++
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Autogenerating Code
●Why use it? 
● Can express complex repetitive actions 
● Handles cases that templates can’t 
● Data-driven approach
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Components of Autogeneration
●Data files 
● Hierarchical 
● Should be easy to read and extend 
● XML works well!
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Components of Autogeneration
●Template files 
● Transform data into code 
● Strong at string manipulation 
● Dedicated tools exist 
● Write a custom language 
● Use an existing script language 
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Components of Autogeneration
●Definition files 
● Driver for actual code expansion 
● Define pairs of data and template inputs 
● May specify output filenames
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Implementing Autogeneration
●Many valid approaches 
●Some don’t work very well 
● MFC/Visual C++ related trauma 
● Valuable lesson to be learned 
● Never hand-edit autogenerated code!
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Implementing Autogeneration
●MWO approach 
● Run autogeneration as pre-compile step 
● Hand edits will be overwritten 
● Forces devs to change autogen input files 
● Can inherit and extend 
● Embed autogen output into project
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Implementing Autogeneration
●You broke my compile times?! 
● Autogenerated output gets very big 
● Helps to have a set of guidelines 
● Only autogenerate code if you need to 
● Only using an interface? 
● Try using a C++ template function
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Implementing Autogeneration
●You broke my compile times?! 
● Manage your timestamps 
● Want to avoid needless recompiles 
● Compiler can’t see autogen file dependencies 
● Pre-build autogen can break iterative builds 
● MWO autogeneration caches output and diffs
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Best Practices with Autogen
●Compile-time asserts 
● You WANT to fail at compile time 
● C++11, Boost StaticAssert 
● Can build your own using trickery
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Best Practices with Autogen
●Compile-time metaprogramming 
● Combining templates and enums 
● Outputs extremely efficient code 
● Fails at compile time, this is good! 
● Can be difficult to understand
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Best Practices with Autogen
●Avoiding name collisions 
● Can easily autogenerate name collisions 
● Two approaches for avoiding collisions 
● Namespaces and classes/structs 
● Understand when to use each
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Best Practices with Autogen
● Structures are valid parameters for templates 
● Namespaces are not

namespace test!
{!
}!!
template <typename T>!
void function();!!
// NO GOOD, can't do this!!
function<test>();

struct test!
{!
};!!
template <typename T>!
void function();!!
// This works!!
function<test>();
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Best Practices with Autogen
● Namespaces can be extended multiple times 
● Structures require a single declaration

namespace test {!
  enum inner {!
  };!
}!
! ! !
namespace test {!
  // This works!!
  void func(inner a_EnumValue);!
}

struct test {!
  enum inner {!
  };!
};!!
struct test {!
  // Nope, struct is already declared!
  void func(inner a_EnumValue);!
};
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Best Practices with Autogen
●Strongly typedef everything (userid, mechid, …) 

● Compile-time ‘apps hungarian’!
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Best Practices with Autogen
●Autogenerate full, explicit constructors 
● Especially for POD structures 
● Catches adding/removing data members 
● Catches type changes with explicit
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●#line and #error directives 
● #line <#> <file>, magical, cross platform! 
● #error <msg> to throw compiler error 
● Reference your data files
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Defining Packets with Autogen
●What turns a structure into a packet? 
● For MWO, it requires a serialize method 

●What info is required? 
● A packet name 
● A set of members 
● Members should have types
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Defining Packets with Autogen
●Defining your templates 
● Want declaration, definition templates for C++ 
● Potentially an inline template for speed 
● Remember to keep header size small!
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foreach ($root->Packet as packet)!
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Defining Packets with Autogen
<Packet Name=“Login">!
   <Member Name=“Username" Type=“UsernameString" />!
   <Member Name=“Password" Type=“PasswordString" />!
</Packet>

foreach ($root->Packet as packet)!
{!
  print(“bool “ . $packet.Name . ”::Serialize(ISerializer &a_Ser) {”);!
  print(“  return“);!
  foreach ($packet->Member as member)!
  {!
    print(“  a_Ser.Serialize(“ . $member.Name . “) && ”);!
  }!
  print(“  true;“);!
  print(“}“);!
}



Defining Packets with Autogen
<Packet Name=“Login">!
   <Member Name=“Username" Type=“UsernameString" />!
   <Member Name=“Password" Type=“PasswordString" />!
</Packet>

{% for packet in root.iterchildren('Packet') %}!
bool {{packet.attrib["Name"]}}::Serialize(ISerializer &a_Ser)!
{!
  return !
{% for member in packet.iterchildren('Member') %}!
    a_Ser.Serialize({{member.attrib["Name"]}}) &&!
{% endfor %}!
    true;!
}!
{% endfor %}
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Dealing with a Stateless Design
●Adding metadata to packets 
● Method for embedding extra data in requests 
● Called ‘PacketSessionData’ in MWO 
● Simply insert a container in packet header



Dealing with a Stateless Design
●Adding metadata to packets 
● May require rudimentary reflection



Dealing with a Stateless Design
●Adding metadata to packets 
● May require rudimentary reflection 
● Handlers should echo this data back



Dealing with a Stateless Design
●Adding metadata to packets 
● May require rudimentary reflection 
● Handlers should echo this data back 
● Keep it small!



Dealing with a Stateless Design
●Adding metadata to packets 
● May require rudimentary reflection 
● Handlers should echo this data back 
● Keep it small! 
● Clean up after yourself
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 <Request>!
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 </Request>!
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Dealing with a Stateless Design
●Give in and add local state 
● For when metadata is just not enough

Client:!!
<Packet Name=“RetrieveFriendsList">!
 <Request>!
  <Member Name=“UIDs" Type=“UIDList"/>!
 </Request>!
 <Response>!
  <Member Name=“Names" Type=“UNameList"/>!
 </Response>!
</Packet>

Persistent Storage:!!
<Packet Name=“RetrieveUserName">!
 <Request>!
  <Member Name=“UID" Type=“userid_t"/>!
 </Request>!
 <Response>!
  <Member Name=“Name" Type=“UserName"/>!
 </Response>!
</Packet>



Hub
1: Ralph 
2: Fred

Dealing with a Stateless Design

Shard 1 Shard 2

1:

1: Ralph

2:

2: Fred

1: Ralph??  1, 2  1, 2??

Needs state! Needs state!
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Dealing with a Stateless Design
●Give in and add local state 
● For when metadata is just not enough 
● Keep a map or hash on server 
● Simple incrementing int to generate keys 
● Store key in packet metadata
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Dealing with a Stateless Design
●Give in and add local state 
● Can’t always guarantee a response 
● Add a timeout mechanism 
● Priority queue, sorted by timeout time 
● Pop from head until no longer timed out
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Dealing with Asynchronous Code
●Problems with asynchronous design 
● Need to communicate between servers 
● Not allowed to block 
● Serial logic broken around async points
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Dealing with Asynchronous Code

Client

Load Balancer Load Balancer

Web Server

Web Server

Matchmaker Packet Relay

Account ManagerDB

Data ManagerDB

Data ManagerDB

Billing Manager

DB Telem Manager

DB Email Manager

CGI Bridge

Login

Hub

DS

DS

CGI Bridge

Login

Hub

DS

DS

Postback Server

Email Provider

DB

Game ManagerLobby Manager

CDN
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Dealing with Asynchronous Code
function Hub::HandleMatchmakeRequest(client, request)!
{!
    mmParams = PS.Send( PS::MMParamsRetrieveRequest(request) );!
    if (mmParams.failed) {!
        return client.Send( Client::MMError(request, mmParams.errormsg) );!
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 !
 !
 !
 !!
 !
}



Dealing with Asynchronous Code
function Hub::HandleMatchmakeRequest(client, request)!
{!
    mmParams = PS.Send( PS::MMParamsRetrieveRequest(request) );!
    if (mmParams.failed) {!
        return client.Send( Client::MMError(request, mmParams.errormsg) );!
    }!!
    mmResult = MM.Send( MM::MMRequest(request, mmParams) );!
    if (mmResult.failed) {!
        return client.Send( Client::MMError(request, mmResult.errormsg) );!
    }!!
 !
}



Dealing with Asynchronous Code
function Hub::HandleMatchmakeRequest(client, request)!
{!
    mmParams = PS.Send( PS::MMParamsRetrieveRequest(request) );!
    if (mmParams.failed) {!
        return client.Send( Client::MMError(request, mmParams.errormsg) );!
    }!!
    mmResult = MM.Send( MM::MMRequest(request, mmParams) );!
    if (mmResult.failed) {!
        return client.Send( Client::MMError(request, mmResult.errormsg) );!
    }!!
    return client.Send( Client::MMResponse(request, mmResult) );!
}
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Dealing with Asynchronous Code
function MM::MakeGame() {!
  MM::PlayerGameList list;!
  if (MM::CreateGame(list)) {!
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
  }!
}
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function MM::MakeGame() {!
  MM::PlayerGameList list;!
  if (MM::CreateGame(list)) {!
    MM::DedicatedServerList serverList = MM::GetAvailableServers();!
    foreach (serverList as server) {!
      dsResult = server.Send( DS::ReserveForGame(list) );!
 !
 !
 !
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    }!
 !
 !
  }!
}
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function MM::MakeGame() {!
  MM::PlayerGameList list;!
  if (MM::CreateGame(list)) {!
    MM::DedicatedServerList serverList = MM::GetAvailableServers();!
    foreach (serverList as server) {!
      dsResult = server.Send( DS::ReserveForGame(list) );!
      if (dsResult.success) {!
        foreach (list as player)!
          player.Hub.Send( Hub::MMResult(player, dsResult) );!
      }!
    }!
 !
 !
  }!
}



Dealing with Asynchronous Code
function MM::MakeGame() {!
  MM::PlayerGameList list;!
  if (MM::CreateGame(list)) {!
    MM::DedicatedServerList serverList = MM::GetAvailableServers();!
    foreach (serverList as server) {!
      dsResult = server.Send( DS::ReserveForGame(list) );!
      if (dsResult.success) {!
        foreach (list as player)!
          player.Hub.Send( Hub::MMResult(player, dsResult) );!
      }!
    }!
    foreach (list as player)!
      player.Hub.Send( Hub::MMFailed(player, “Failed”) );!
  }!
}
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Dealing with Asynchronous Code
●Spawn a thread for each request? 
● Uses lots of stack memory 
● Performance degrades 

●Resumable function? 
● Function re-entrant from multiple points 
● Called a coroutine
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●Goals for a coroutine 
● Simple 
● Cross platform 
● Easy to use and debug 
● Abstract away asynchronous behaviour
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Dealing with Asynchronous Code
●Coroutines using switch 
● Cases will skip over flow control (Duff’s Device)

register n = (count + 7) / 8; switch(count % 8) {!
  case 0: do {  *to = *from++;!
  case 7:       *to = *from++;!
  case 6:       *to = *from++;!
  case 5:       *to = *from++;!
  case 4:       *to = *from++;!
  case 3:       *to = *from++;!
  case 2:       *to = *from++;!
  case 1:       *to = *from++;!
} while(--n > 0); }
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Dealing with Asynchronous Code
●Coroutines using switch 
● This is not a new approach 
● Excellent article online by Simon Tatham 

http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html 

● Our goal is a safe implementation

http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
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● Can leverage our autogeneration system! 
● But, data file can now contain flow control 
● XML not necessarily the best fit



Implementing Coroutines
●Defining a language

<Function Name="SumTen" ReturnType="int">!
    <Variable Type="int" Name="i" Init="0" />!
    <Variable Type="int" Name="count" Init="0" />!
    <Code Value="for (i = 0; i &lt; 10; i++)" />!
    <Code Value="{" />!
    <Code Value="    count += i;" />!
    <Code Value="}" />!
    <Code Value="return count;" />!
</Function>



Implementing Coroutines
●Defining a language

<Function Name="SumTen" ReturnType="int">!
    <Variable Type="int" Name="i" Init="0" />!
    <Variable Type="int" Name="count" Init="0" />!
    <For Init=“i = 0" Term=“i &lt; 10" Incr="i++" >!
        <Sum Output="count" In1="count" In2="i" />!
    </For>!
    <Return Variable="count" />!
</Function>
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Implementing Coroutines
●Creating an instance 
● Make coroutine a timeout state structure 
● Store coroutines id in packet metadata 
● On response, fetch coroutine and resume! ? 
● No, coroutine id’s will not be unique
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Implementing Coroutines
●Identifying a coroutine owner 
● Depends on your server architecture 
● MWO 32-bit hash for any process 
● Contains IPv4Address 
● Service type 
● Process ID 
● Store hash in metadata
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coroutine start!
!  !
!  !
!  !
!  !
!  !
!  !
!  

int i = 0;!
FooResult results[2];!
for (; i < 2; i++)!
{!
  FooRequest request;!
  InvokeServer(request, results[i]);!
}
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coroutine start!
! - initialize loop!
! - send request 1!
! - yield control!
! - timeout triggers!
! - send request 2!
! - yield control!
!  

int i = 0;!
FooResult results[2];!
for (; i < 2; i++)!
{!
  FooRequest request;!
  InvokeServer(request, results[i]);!
}



Implementing Coroutines
●Handling timeouts

coroutine start!
! - initialize loop!
! - send request 1!
! - yield control!
! - timeout triggers!
! - send request 2!
! - yield control!
! - receive request 1 response!

int i = 0;!
FooResult results[2];!
for (; i < 2; i++)!
{!
  FooRequest request;!
  InvokeServer(request, results[i]);!
}
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Implementing Coroutines
●Handling timeouts 
● Need to uniquely identify each request 
● Use a request counter 
● Can store counter in packet metadata 
● Only process response if counters match 
● Increment on resume
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Implementing Coroutines
coroutine start!
! - coroutine.counter <- 0!
! - initialize loop!
! - send request 1!
! ! - packet.counter <- coroutine.counter (0)!
! - yield control!
! - timeout triggers!
! ! - coroutine.counter <- 1!
! - send request 2!
! ! - packet.counter <- coroutine.counter (1)!
! - yield control!
! - receive request 1 response!!
! ! - packet.counter (0) != coroutine.counter (1), discard!
! - receive request 2 response!
! ! - packet.counter (1) == coroutine.counter (1), process
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Example Code
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● It actually works!
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Example Code
http://static.mwomercs.com/img/karl/GDC2014.zip 
●Uses preprocessor! 
● Macro-based, ugly syntax 
● Can’t handle hierarchy very well 
● Weird token pasting rules 
● Can’t emit comments, #line or #error 
● No support for conditionals in template
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Future Work
●Nicer coroutine syntax 
●Issuing parallel requests from a coroutine 
●Could you write a coroutine serializer? 
● Why?



karl.berg@piranhagames.com 

Questions!

mailto:karl.berg@piranhagames.com

