
1

Performance Analysis and Debug Tools
for Mobile Games

Lorenzo Dal Col Senior Software Engineer, ARM
Ronan Synnott Select Field Applications Engineer, ARM

2

1.  Introduction to performance analysis with ARM® DS-5 and Streamline Performance Analyzer

2.  Software Profiling

§  Find hotspots, system glitches, critical conditions at a glance

§  Power measurements

3.  GPU Profiling

§  Using the ARM® Mali™ GPU hardware counters to find the bottleneck

4.  Debugging with Mali Graphics Debugger

§  Overdraw and frame analysis

5.  Q & A

Agenda

3

Importance of Analysis & Debug

§  Mobile Platforms
§  Expectation of amazing console-like graphics and playing experience
§  Screen resolution beyond HD
§  Limited power budget

§  Solution
§  ARM® Cortex® CPUs and Mali™ GPUs are designed for low power

whilst providing innovative features to keep up performance
§  Software developers can be “smart” when developing apps
§  Good tools can do the heavy lifting

4
 4

Performance Analysis & Debug

ARM® DS-5 Streamline
Performance Analyzer
•  System-wide performance analysis

•  Combined ARM Cortex®
Processors and Mali™ GPU visibility

•  Optimize for performance & power
across the system

ARM Mali Graphics Debugger
•  API Trace & Debug Tool

•  Understand graphics and compute
issues at the API level

•  Debug and improve performance
at frame level

•  Support for OpenGL® ES 1,1, 2.0,
3.0 and OpenCL™ 1.1

Offline Compilers
•  Understand complexity of GLSL
shaders and CL kernels

•  Support for ARM Mali-4xx and
Mali-T6xx GPU families

5

ARM® DS-5 Streamline Performance Analyzer

§  System Wide Performance Analysis
§  Simultaneous visibility across ARM Cortex® processors &

Mali™ GPUs
§  Support for graphics and GPU Compute performance

analysis on Mali-T600 series
§  Timeline profiling of hardware counters for detailed analysis
§  Custom counters
§  Per-core/thread/process granularity
§  Frame buffer capture and display

§  Optimize

§  Performance

§  Energy efficiency

§  Across the system

6

The Basics
§  Software based solution

§  ICE/trace units not required

§  Support for Linux kernel 2.6.32+ on target
§  Eclipse plug-in or command line

§  Lightweight sample profiling
§  Time- or event*-based sampling
§  Process to C/C++ source code profiler
§  Low probe effect; <5% typically

§  Multiple data sources
§  CPU, GPU and Interconnect hardware counters
§  Software counters and kernel tracepoints
§  User defined counters and instrumented code
§  Power/energy measurements

User Space

ARM Processor

OpenGL® ES

Applications & Middleware

Linux Kernel

ARM® Mali™ GPU Drivers

gator Daemon

gator Driver

TCP/IP

Target D
evice

* Event-based sampling is available on kernels 3.0 or later

7

Timeline: The Big Picture
Find hotspots, system glitches, critical conditions at a glance

Select from 40+ CPU counters,
OS level and custom metrics

Accumulate counters, measure time
 and find instant hotspots

Select one or more processes to
visualize their instant load on CPU

Combined task switch trace and
 sampled profile for all threads

8

§  Visually trace core migration and per-core statistics
§  Spot non-optimal thread synchronization and improve parallelism

SMP Analysis
Take advantage of multicore SMP platforms

Per core, per process activity

9
 9

Drilldown Software Profiling

Quickly identify instant hotspots

Filter timeline data to generate
focused software profile reports

Click on the function name
to go to source code level profile

10
 10

Bottom-Up Shared Library Analysis

Select the library or function to look
into, then navigate to Call Paths
 or Timeline

Processes or call paths using it
will be automatically highlighted

11
 11

Power Measurement Interfaces

V

Visual Analysis

Automated Tests

ARM DS-5 Streamline Performance Analyzer

ARM® Energy Probe

NI DAQ USB-62xx

•  3-channel
•  System-level analysis
•  Easy to deploy
•  Affordable

Good for trend spotting and
application optimization

•  40+ analog inputs
•  Subcomponent sensitivity
•  High fidelity
•  Higher cost

Good for OS power management tuning and benchmarking

Data Acquisition

12

The Power of Having It All in One Place
How effective are you at managing your energy budget?

V

How long does the power manager take to
respond to changes in CPU load?

Monitor instant voltage, current and
power per channel

13

 Which is the right
version for you?

Community Edition vs. Professional Edition

BSP /
Distribution

Makers

OEMs /
ODMs

Application
developers

Pr
of

es
si

on
al

 E
di

tio
n

C
E

Community Professional

Typical Use Case Simple application profiling System-wide, SMP analysis

Program Images 1 Limited to host memory

Timeline View

* Performance Charts ü ü

* Process Bars ü ü

* ARM® Mali™ GPU Analysis ü ü

* Quick Profile Summary ü

* Core Affinity Mode ü

* Energy Probe data capture ü

* Time Filtering ü

* Annotation ü ü

Call Paths View ü

Functions View ü ü

Code View ü

Call Graph ü

Stack View ü

Log View ü

Command Line ü

Event Based Sampling ü

14

Main Bottlenecks
§  CPU

§  Too many draw calls
§  Complex physics

§  Vertex processing
§  Too many vertices
§  Too much computation per vertex

§  Fragment processing
§  Too many fragments, overdraw
§  Too much computation per fragment

§  Bandwidth
§  Big and uncompressed textures
§  High resolution framebuffer

§  Battery life
§  Energy consumption strongly affects User

Experience

CPU

Vertex
Shader

Fragment
Shader

Memory

Vertices
Textures
Uniforms

Vertices
Uniforms

Triangles
Varyings Pixels

Textures
Uniforms
Varyings

15

ARM® Mali™ Graphics Debugger

§  Graphics debugging for content developers

§  API level tracing

§  Understand issues and causes at frame level

§  Support for OpenGL® ES 2.0, 3.0, EGL™ &
OpenCL™ 1.1

§  Complimentary to DS-5 Streamline

v1.2.2 released in February

v1.3 will be available soon

16

Investigation with the ARM® Mali™ Graphics Debugger

Frame Outline

Framebuffer /
Render Targets

Frame Statistics

States
Uniforms
Vertex Attributes
Buffers

Dynamic Help

API Trace

Textures
Shaders

Assets View

17

Epic Citadel

18

19

Profiling via ARM® DS-5 Development Studio

§  DS-5 Streamline to capture data
§  Google Nexus 10, Android™ 4.4
§  Dual core ARM Cortex®-­‐A15, Mali™-­‐T604

§  Low CPU activity (CPU Activity -> User)
that averages to 24% over one second

§  Burst in GPU activity: 99% utilization
 (GPU Fragment ➞ Activity)

§  While rendering the most complicated
scene, the application is capable of 36
fps (29ms/frame)

20

The Application is GPU bound
The CPU has to wait until the fragment processing has finished

12ms

12ms

28ms

21

ARM® Mali™ GPU Hardware Counters

§  Over the highlighted time of one second
the GPU was active for 448m cycles
(Mali Job Manager Cycles ➞ GPU cycles)

§  With this hardware, the maximum
number of cycles is 450m

§  A first pass of optimization would lead
to a higher frame rate

§  After reaching V-SYNC, optimization can
leads to saving energy and to a longer
play time

22

Vertex and Fragment Processing

§  GPU is spending:

§  186m (29%) on vertex processing
 (ARM® Mali™ Job Manager Cycles ➞ JS1 cycles)

§  448m (70%) on fragment processing
 (Mali Job Manager Cycles ➞ JS0 cycles)

70%

29%

Fragment Count
Per Program

Fragment Cycles

Vertex Cycles

Setup work

There might be an overhead in the job manager trying to optimize vertex list packing into
jobs.

23

§  Arithmetic instructions
§  Math in the shaders

§  Load & Store instructions
§  Uniforms, attributes and varyings

§  Texture instructions
§  Texture sampling and filtering

§  Instructions can run in parallel
§  Each one can be a bottleneck
§  There are two arithmetic pipelines so

we should aim to increase the arithmetic workload

ARM® Mali™-T628 GPU Tripipe Cycles

24

Inspect the Tripipe Counters
Reduce the load on the L/S pipeline

Load & Store 408m

Texture 197m

Arithmetic 105m

Tripipe Cycles 444m

GPU Cycles 448m

25

§  It’s easy to calculate a couple of CPI (cycles per instruction) metrics:

§  For the load/store pipeline we have:
 408m (Mali Load/Store Pipe ➞ LS instruction issues)
 / 195m (Mali Load/Store Pipe ➞ LS instructions)
 = 2.09 cycles/instruction

§  For the texture pipeline we have:
 197m (Mali Texture Pipe ➞ T instruction issues)
 / 169m (Mali Texture Pipe ➞ T instructions)
 = 1.16 cycles/instruction

Tripipe Counters
Cycles per instruction metrics

0%

20%

40%

60%

80%

100%

Load &
Store

Pipeline

Texture
Pipeline

Stalls

Instructions

26

CPU

Vertex
Shader

Fragment
Shader

Memory

27

CPU

Vertex
Shader

Fragment
Shader

Memory

CPU Bound

28

CPU Bound

§  Mali GPU is a deferred architecture
§  Do not force a pipeline flush by reading

back data (glReadPixels, glFinish, etc.)
§  Reduce the amount of draw calls
§  Try to combine your draw calls together

§  Offload some of the work to the GPU
§  Move physics from CPU to GPU

§  Avoid unnecessary OpenGL® ES calls
(glGetError, redundant stage changes,
etc.)

Synchronous Rendering

Deferred Rendering

29

CPU

Vertex
Shader

Fragment
Shader

Memory

Vertex Bound

30

Vertex Bound

§  Get your artist to remove unnecessary
vertices

§  LOD switching
§  Only objects near the camera need to be

in high detail

§  Use culling

§  Too many cycles in the vertex shader

31

Vertex Count and Shader Optimizations
Identify the top heavyweight vertex shaders

35%

33%

13%

19%

Vertex Cycles Per Program

Program 175

Program 280

Program 187

Others

32

CPU

Vertex
Shader

Fragment
Shader

Memory

Fragment Bound

33

Fragment Bound

§  Render to a smaller framebuffer

§  Move computation from the fragment
to the vertex shader (use HW
interpolation)

§  Drawing your objects front to back
instead of back to front reduces
overdraw

§  Reduce the amount of transparency in
the scene

34
 34

Overdraw

§  This is when you draw to each pixel on the screen
more than once

§  Drawing your objects front to back instead of back
to front reduces overdraw

§  Limiting the amount of transparency in the scene
can help

Overdraw

35

Overdraw Factor

§  We divide the number of output pixels
by the number of fragments, each
rendered fragment corresponds to one
fragment thread and each tile is 16x16
pixels, thus in our case:

90.7m (Mali Core Threads ➞ Fragment threads)

/ 143K (Mali Fragment Tasks ➞ Tiles rendered) x 256

= 2.48 threads/pixel

36

Frame Capture

37

Frame Analysis
Check the overdraw factor

5-7x

1x 8x

2x

3-5x
3-5x

38

Shader Map and Fragment Count
Identify the top heavyweight fragment shaders

75%

14%
4% 7%

Fragment Count Per Program

Program 175

Program 280

Program 181

Others

~10m instances
/ (2560×1600) pixel
= 2.44

39

Shader Optimization

§  Since the arithmetic workload is not
very big, we should reduce the number
of uniform and varyings and calculate
them on-the-fly

§  Reduce their size
§  Reduce their precision: is highp always

necessary?
§  Use the Mali Offline Shader Compiler!

http://malideveloper.arm.com/develop-for-mali/
tools/analysis-debug/mali-gpu-offline-shader-
compiler/

40

CPU

Vertex
Shader

Fragment
Shader

Memory

Bandwidth Bound

41

Bandwidth

§  When creating embedded graphics
applications bandwidth is a scarce
resource

§  A typical embedded device can handle 5.0
Gigabytes a second of bandwidth

§  A typical desktop GPU can do in excess of
100 Gigabytes a second

§  The application is not bandwidth bound as
it performs, over a period of one second:

§  Since bandwidth usage is related to energy

consumption it’s always worth optimizing it

(96m (Mali L2 Cache ➞ External read beats) +

90.7m (Mali L2 Cache ➞ External write beats)) x 16

~= 2.9 GB/s

42

Bandwidth Bound

Vertices
§  Reduce the number of vertices and

varyings
§  Interleave vertices, normals, texture

coordinates
§  Use Vertex Buffer Objects

Fragments
§  Use texture compression
§  Enable texture mipmapping

This will also cause a better cache
utilization.

Indices sparseness: 1.47
bad for caching!

43

§  The current most popular format is
ETC Texture Compression

§  But ASTC (Adaptive Scalable Texture
Compression) can deliver < 1 bit/pixel

Textures
Save memory and bandwidth with texture compression

3% 3%

64%
2%

28%

Texture Weight by Dimension
(Uncompressed RGBA)

Other

256 x 256

512 x 384

512 x 512

1024 x 1024

2560 x 1504

2048 x 2048

944 MB

236 MB
151 MB

Total Texture Memory

Uncompressed ETC1 ASTC 5x5

44

This technology prevents the game from
wasting bandwidth while still utilizing GPU
resources to render tiles that haven’t
changed from previous frames.

§  Every time the GPU resolves a tile-full of
color samples, it computes a signature

§  Each signature is written into a list
associated with the output color buffer

§  The next time it renders to that buffer, if
the signature hasn't changed, it skips
writing out the tile

Transaction Elimination
Helps reduce bandwidth consumption

More about Transaction Elimination here:
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus

45

Transaction Elimination

67%

33% Tiles Written

Tiles Killed by
Transaction Elimination

Camera moving in the scene

Loading screen
11%

89%

Tiles Written

Tiles Killed by
Transaction Elimination

46

Vertex Buffer Objects

§  Using Vertex Buffer Objects (VBOs) can
save you a lot of time in overhead

§  Every frame in your application, all of your
vertices and colour information will get sent
to the GPU

§  A lot of the time these won’t change. So
there is no need to keep sending them

§  Would be a much better idea to cache the
data in graphics memory

47

Summary

§  Covered today:

§  Introduction to performance analysis

§  Software Profiling

§  GPU Profiling

§  Debugging with the ARM® Mali™

Graphics Debugger

§  For more information:

§  www.malideveloper.arm.com

§  www.ds.arm.com

§  www.community.arm.com

48

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any Questions?

