Programming for Multicore & big.LITTLE

Ed Plowman
Director of Solutions Architecture
Media Processing Group,ARM

The Architecture for the Digital World® ARM

Multicore & big.LITTLE

The case for multiprocessing

= Platform trends
= Clear rise in quad+ cores from mid to high-end
= Everything’s getting bigger — LTE, GPU, camera, display
= Single thread performance improvements diminishing — focus on multi-core
= |t is not just about performance - thermally constrained use cases are now commonplace

= Software trends
= OS vendors taking more advantage of multicore
= Wider awareness of multiprocessing support libraries
* Increased combined use of devices — e.g. augmented reality

: ARM

Multiprocessing

Taking advantage of parallelism

Use of common Multi-threading

In the Core . .
parallelizing tools ~ where possible

OpenMP Never easy,

NEON/SIMD Renderscript, .~ but
increasingly

necessary

OpenCL, etc.

Looking Ahead — Multi-core Trends for 2014-5

Cortex-Al5/Cortex-A7 big.LITTLE is the premium product in 2014
= Range of core count: 4 (2+2), 6 (2+4) and 8 (4+4) cores

= Cortex-Al7/Cortex-A7 (32b) coming in 2015

ARMvV8-A (64b) chipsets emerging across all segments in 2014

= Quad and Octa-core Cortex-A53 coming into entry level and mid-range

High-end mobile expected to move to A57 and A53 big.LITTLE for 2015

= Multiple big.LITTLE topologies expected

New LITTLE processors offer similar
performance to Cortex-A9

Significant performance boost
with big processor e.g. Cortex-Al5

1.2

0.8

0.6

0.4 +

0.2 ~

Relative performance

Cortex-A7 Cortex-A9

Cortex-Al5

ARM

A big.LITTLE System

Programmer’s view of hardware

= High performance Cortex-A57 CPU cluster

= Energy efficient Cortex-A53 CPU cluster

= CCI-400 maintains cache-coherency between clusters

= GIC-400 provides transparent virtualized Interrupt control

GIC-400 Interrupt control

A53 A53 -
Auxiliary
A53 AS3 Interfaces

' ¢

CCI-400 Cache Coherent Interconnect

ARM

big. LITTLE

The evidence from a 4+4 MP system vs Quad Cortex-Al>5

E CPU Power Saving H SoC Power Saving Improvement over A15 alone
90% 50%

45% = =
80% T4/
73% . \

o,
73% 40%| -

70% -

35% advantage

60% 1 30%

50% -

25%

20%

R 1™ <=4 threads, no
15%

30% - degradation in

10%

20% - 5o I MP
IO% N 0% k‘ T T T T QT- T - - T
NN Q N O X N NS e
o | <) X\ < O R Y XY
0% . & & & @é\ 'b&'b &Q$> &
2 <
& & ¢ & ¢ & & 3
%‘gg\ & og&
A\ el

big.LITTLE Development
General advice for Global Task Scheduling (GTYS)

= Trust the scheduler... = LITTLE cores are great
= Linux will schedule for performance and = You'll be using them a lot
efficiency = Cortex-A53 ~20% greater perf than Cortex-
= All new tasks started on big to avoid A9
latency = Most workloads will run on LITTLE
" Quickly adapts to a task’s needs = More thermal headroom for other SoC
components
= ...Unless
= You know a thread is intensive but not = big cores are serious powerhouses
urgent = Think of them as short-burst accelerators —
= Affine to LITTLE, never to big e.g. Physics based special effects
= e.g.Maybe use this for asset loading on a = Think about the trade offs during design

separate thread

: ARM

big.LITTLE Development

Things to avoid

= Imbalanced threads sharing common data

= Cluster coherency is excellent but not free

* If you have real-time threads note that...
= RT threads are not auto migrated
= RT threads are a design decision, think carefully about affinity
= http://linux.die.net/man/2/sched_setaffinity
= And TBB too https://www.threadingbuildingblocks.org/

= Avoid long running tasks on big cores
= You'll rarely need that processing power for long periods
= Can the task be parallelized?

ARM

Takeaways

= big.LITTLE & Global Task Scheduling (or HMP) in 2014 devices

= Fantastic peak performance

= Energy-efficient, sustainable compute for long running workloads
= Multi-processing

= Get ahead of the limits on single thread performance
= Avoid thermal constraints on performance

: ARM

NEON and SIMD

Matt DuPuy
Staff Software Engineer, ARM

The Architecture for the Digital World® ARM

Slngle Instructlon I\/Iultlple Data

by Jan Mehlich - licenced under

The Architecture for the Digital World® ARM

http://en.wikipedia.org/wiki/File:Neon.JPG
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en

NEON is a wide SIMD data processing architecture

= Extension of the ARM® instruction set
= 32 registers, 64-bits wide (dual view as |6 registers, 128-bits wide in ARMv7)

= NEON Instructions perform “Packed SIMD” processing
= Registers are considered as vectors of elements of the same data type
= Data types: signed/unsigned 8-bit, | 6-bit,32-bit,64-bit, single/double prec., floating or integer

= Instructions perform the same operation in all lanes

Source
Registers

[Elements P —— 'E 3 ?l tl o
‘ Ce Ie . I | “om Operation]

ik

| ; |] va [Destination]
—._ Register

T ARM
12 Lane

General purpose SIMD processing useful for many applications

= Supports widest range multimedia codecs used for internet applications
= =Many soft codec standards: MPEG-4, H.264, On2 VP6/7/8/9, Real,AVS, ...
= =Supports all internet and digital home standards in software
= Fewer cycles needed
= =NEON will give |.6x-2.5x performance on complex video codecs
= =|ndividual simple DSP algorithms can show larger performance boost (4x-8x)
= =Processor can sleep sooner => overall dynamic power saving
= Straightforward to program
= =Clean orthogonal vector architecture
= =Applicable to a wide range of data intensive computation.
= =Not just for codecs — applicable to 2D/3D graphics and other processing

*Off-the-shelf Tools, OS, commercial & open source ecosystem support

: ARM

Specific media intensive test case using Android NDK

15.0000

10.0000

5.0000
0.0000 e e
Dalvik Native Neon

M Time in seconds

2000

1500
1000

500
; L m

MNative ARMvG Neon
14 B Time in milliseconds ARM

NEON Visualizer

http://szeged.github.com/nevada/

'’ ™
: L = NEVADA
’ A
~ Cote ~ NEON Ragaters

Vo Mate Decemas wned Decimal wmd £
O wecoled ql. a2 165 180 238 245 239 137 101 204 G1233207 78 220 49 179 &3
O wenfals. al. ad 12 158 179 216 170 85 134 11§ 165 183 195 132 192 225 14 208 o
O webalf g1l g2 g 44 12128 3 WM 2= 45 151 210 169 84 164 139 236 a2
O wab itk a1s, a2, 03 L71 102 31 155 10§ 197 116 150 S120162 2 92129 « Q
O wadd 33 30, ok 35 14 66 12749 278 140 30 226 142 30 37133 9T I B W o4
Onddela PEL 39 108 215 197 214 20 138 DI1] 18106 195 34 158 18X 37 25 Qs
(\.; A LS L3 197 114 157 313 207 202 181 &) 216210 245 248 41 120 116 %0 D1 Q6
\J wond 432 o0, uk. o3 208 30 15172 12140 160 9 T2ILIOT 196 5 62 L&k 143 ar
(L wand il gl % I ITE T A 90 100 47 M 16D 157 SR 132 38 167 cs
O wrrgd. 3l4, 313 I9L 204 103 121 LeS 188 124 84 131 250 194 112 222 199 107 103 s
() wase @8, 48, dia 1 43304 21 200 163 20 20% 99152 244 233 47 111 1m6 49 Qv
O e @9 @A @0 S8 850199 a3 1322 ¢ W 250 % & 164 20 I31 108 157 (+13]
) ‘woev L. 118, €23 322 12306 35 ML 136 98 164 8 M MR 25 B Wi [+174
é_ = v g M S0 104231 7 76 105 8% 290217 48 167 248 3% 117 4% [+15]
>4 e 165 180 238 245 209 157 191 204 ALZ1 207 78 220 49319 & oM
P vy 453, £ $2 48106229 8 12101 6e DOM] s1200 0 6 218 33 e 38 Qs
) wmav gl al?
~ Wosing Memory ~ ARM Reguiers
Decimal wintd U
7.0 (Y RO B 3 L
"wa o o & 0 o o o 0 [} R1
23.% e 9 0 0 o0 o o o L} R2
NN 9 0 0 0 o6 o o O e R
»w 2 0 ¢ 0 o o 9 0 L] i
o .0 g 06 o 0 o © o o [} RS
55 48 ¢ 2 @ 0 @ o 9 0o e Re
63,50 e 06 o 0 & o o o [} [
T8 2 9 o 0 © & % 0O L] RS
™2 o 0 06 06 o o e o] R
"0 9 0 0 0o @ & o o ¢ R®W
95 88 @ 0 & 0o @ o o o ¢ RN
WA 0 o0 0 0 O° 9 9 0 ¢ R
114904 o 0 o 0 ©o © o o 9 0
1M1 0 0 0 0 o @ 9 0 Q LR
L WX o 0 0 0o 0 0 o o a P
r ° 0 0 0 PsR
Wnceoas o o 0 o FPSCR
! J

ARM

http://szeged.github.com/nevada/
http://szeged.github.com/nevada/

Don’t Reinvent the wheel! NEON in Open Source Today

Google WebM — 11,000 lines NEON assembler!

Bluez — official Linux Bluetooth protocol stack

Pixman (part of cairo 2D graphics library)

ffmpeg (libav) — libavcodec

LGPL media player used in many Linux distros and products
Extensive NEON optimizations

x264 — Google Summer Of Code 2009

GPL H.264 encoder — e.g. for video conferencing

Android — NEON optimizations

Skia library, S32A_D565_Opaque 5x faster using NEON
Available in Google Skia tree from 03-Aug-2009

LLVM — code generation backend used by Android RenderScript
Eigen2 — C++ vector math / linear algebra template library
TheorARM - libtheora NEON version (optimized by Google)
libjpeg / libjpeg-turbo — optimized JPEG decode

libpng — optimized PNG decode

FFTW — NEON enabled FFT library

Liboil / liborc — runtime compiler for SIMD processing

webkit/blink — used by Chrome Browser

web-m

€3 Bluetooth’

& cairo®
) FFMPEG

</ theora org

) B @ e
AR

M

Optimization Paths for Neon

Opensource libraries, e.g. OpenMAX libav, libjpeg, Android Skia, etc.
= Freely available Open Source optimizations
Vectorizing Compilers
= Exploits NEON SIMD automatically with existing source code
= Status: Released (in DS-5 armcc, CodeSourcery, Linaro gcc and now LLVM)
NEON C Instrinsics
= C function call interface to NEON operations
= Supports all data types and operations supported by NEON
= Status: Released (in DS-5 and gcc), LLVM/Clang under development
Assembler
= For those who really want to optimize at the lowest level
= Status: Released (in DS-5 and gcc/gas)
Commercial vendors
= Optimized and supported off-the-shelf packages

ARM

Introducing NEIO

= NelO0 is designed to provide a set of
common, useful functions which

have been optimised for ARMv7 and NEON, many
v8 functions available in intrinsic C

provide consistent well tested behaviour

and that can be easily incorporated into
applications

Is targeted at Android and Linux to maximize app
performance and tested under iOS

Features

Usable from C/C++ and Java/|NI

The library is modular; functionality that is not
required within an App can be discarded

Functions similar to the Accelerate Framework
provided by iOS

= It is Free

= No commercial complications- ‘build and ship’
BSD License

= well-tested behavior with example code

= Use of the NelO library should be a
joy, not a chore

= Qut-of-box and user experience is critical to
success

= Build and go, accessible documentation, clear
code

= Supported by ARM, community contributions

ARM

NelODroid — The App in action

* NEIODroid is a benchmarking Android App that
uses NEIO.

* Routines are written using VFP in C,VFP in
Assembly and NEON.

‘Example routines:

‘arm_result t normalize vecZf(arm vecZ2f t *
dst, arm vecZ2f t * src, unsigned 1int
count) ;

‘arm_result t normalize vec3f(arm vec3f t *

dst, arm vec3f t * src, unsigned int
count) ;

‘arm result t normalize vecdf(arm vecdf t *
dst, arm veci4f t * src, unsigned int
count) ;

B
&8 -IL L

ME10Droid

ARM

20

64-bit Is the New Black

Jesse Barker
Principal Software Engineer, ARM

The Architecture for the Digital World® ARM

A Little Taxonomy

21

ARMv{Version/Extension/Class} — Generic Architecture Name
= ARMv8-A — ARM architecture version 8, application class

AArch64 — 64-bit execution state
= A64 — ARM instruction set
= P64 — 64-bit data model
= |LP32 — 32-bit data model

AArch32 — 32-bit execution state
= A32 —ARM instruction set

= 1732 —Thumb instruction set
= |LP32 — 32-bit data model

Interprocessing — Interaction of execution environments

ARM

A Little Perspective

NEON™
Adv SIMD

Thumb®-2

TrustZone®

Jazelle®

ARMvé6 ARMv7-A/R ARMvVS-A

22

S

Use this one or previous one!

A32+132 ISAs A64 ISA

AArch32 AArché64

ARM

A Closer Look

= ARMvV8-A is one of the most significant
architecture changes in ARM'’s history

32-bitVA; =40-bit PA

>32-bitVA; <48-bit PA
4KB pages ' {4, 16, 64}KB pages
VirtualizationExtn EL3,EL2, EL| and ELO exception hierarchy
= AArché4 can access ALL ARMv8-A -
= Larger address space (>4GB memory for Application) ‘ A32+T32 ISAs , A4 ISA
= Wider data register (64-bit) ARM+Thumb ISAs -
= Better SIMD (NEON) LD acquire/ST release: CIx/C++ | | compliance

= New Crypto Instructions '
= More data registers (3| general, 32 FP/SIMD/Crypto)

LargePhysAddrExtn

= More...
32
= In the long term, delivers an unified ARMv7-A ARMVS-A

architecture across Mobile, Client
(Table/Desktop) and Enterprise markets

. ARM

Exception Levels & Interprocessing

Exception <€ 32-bit compatibility
Level O
ELO
..................... Hypervisor +
OS +
ELI Application
P AR Full AArché4 support Full AArch32
I support support
I Monitor + .
| EL2 Hypervisor + AArch32
..................... OS support Monitor +
I Hypervisor
I EL3 support
[N
RESET < AArché4 AArché4 AArché4 AArch32
—V

Native 64-bit support >

24

S0, You Have a 32-bit Application...

25

Moving to ARMv8-A

= No swap instruction, CP 15 barriers, load/store multiple
= Load/store pair

Moving to A64

= Mnemonically similar to A32

= More and larger registers

= No instruction predication

= Conditional select

= Dedicated return instructions

Why move!?

= Significant performance gains come with ARMv8-A

ARM

But You Do Not Use Assembly Language

= Beware of
= Object sizes in LP64
= Casting between pointer and non-pointer types
= Implicit type/size conversions
= Bit-wise manipulations
= Magic numbers
= Multiarch can be your friend

= Trust your compiler!

g ARM

Toolchains

" ARM is actively involved in two major Open Source Compilers
" LLVM

27

AArch64 supported upstream as of LLVM 3.3
Ongoing work to address outstanding defects
OpenCL™ support

Buildbots available http://lab.llvm.org:801 | /builders/

= GCC

AArch64 supported upstream as of GCC 4.8

Support for dynamic linking, TLS, cross-compiler and glibc
Support for C/C++ ABI and PCS

ARM® NEON™ auto-vectorization and intrinsics

ARM

http://lab.llvm.org:8011/builders/

Questions!

ARM

Thank You!

ARM

