
1

Programming for Multicore & big.LITTLE

Ed Plowman

Director of Solutions Architecture

Media Processing Group, ARM

2

 Platform trends

 Clear rise in quad+ cores from mid to high-end

 Everything’s getting bigger – LTE, GPU, camera, display

 Single thread performance improvements diminishing – focus on multi-core

 It is not just about performance - thermally constrained use cases are now commonplace

 Software trends

 OS vendors taking more advantage of multicore

 Wider awareness of multiprocessing support libraries

 Increased combined use of devices – e.g. augmented reality

Multicore & big.LITTLE
The case for multiprocessing

3

In the Core

NEON/SIMD

Use of common
parallelizing tools

OpenMP,
Renderscript,
OpenCL, etc.

Multi-threading
where possible

Never easy,
but

increasingly
necessary

Multiprocessing
Taking advantage of parallelism

4

Looking Ahead – Multi-core Trends for 2014-5

 Cortex-A15/Cortex-A7 big.LITTLE is the premium product in 2014

 Range of core count: 4 (2+2), 6 (2+4) and 8 (4+4) cores

 Cortex-A17/Cortex-A7 (32b) coming in 2015

 ARMv8-A (64b) chipsets emerging across all segments in 2014

 Quad and Octa-core Cortex-A53 coming into entry level and mid-range

 High-end mobile expected to move to A57 and A53 big.LITTLE for 2015

 Multiple big.LITTLE topologies expected

 New LITTLE processors offer similar

performance to Cortex-A9

 Significant performance boost

with big processor e.g. Cortex-A15

5

 High performance Cortex-A57 CPU cluster

 Energy efficient Cortex-A53 CPU cluster

 CCI-400 maintains cache-coherency between clusters

 GIC-400 provides transparent virtualized Interrupt control

A big.LITTLE System
Programmer’s view of hardware

A57

L
2

CCI-400 Cache Coherent Interconnect

Auxiliary

Interfaces

A57

A57

A57

L
2

A53 A53

A53 A53

GIC-400 Interrupt control

6

big.LITTLE
The evidence from a 4+4 MP system vs Quad Cortex-A15

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Improvement over A15 alone

<= 4 threads, no
degradation in

MP

 > 4 threads, MP capacity
advantage

73%
76% 75%

42% 42%

73%
76%

33%

38% 39%
35%

21%

33%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

CPU Power Saving SoC Power Saving

7

 Trust the scheduler…

 Linux will schedule for performance and

efficiency

 All new tasks started on big to avoid

latency

 Quickly adapts to a task’s needs

 …Unless

 You know a thread is intensive but not

urgent

 Affine to LITTLE, never to big

 e.g. Maybe use this for asset loading on a

separate thread

 LITTLE cores are great

 You’ll be using them a lot

 Cortex-A53 ~20% greater perf than Cortex-

A9

 Most workloads will run on LITTLE

 More thermal headroom for other SoC

components

 big cores are serious powerhouses

 Think of them as short-burst accelerators –

e.g. Physics based special effects

 Think about the trade offs during design

big.LITTLE Development
General advice for Global Task Scheduling (GTS)

8

 Imbalanced threads sharing common data

 Cluster coherency is excellent but not free

 If you have real-time threads note that…

 RT threads are not auto migrated

 RT threads are a design decision, think carefully about affinity

 http://linux.die.net/man/2/sched_setaffinity

 And TBB too https://www.threadingbuildingblocks.org/

 Avoid long running tasks on big cores

 You’ll rarely need that processing power for long periods

 Can the task be parallelized?

big.LITTLE Development
Things to avoid

9

 big.LITTLE & Global Task Scheduling (or HMP) in 2014 devices

 Fantastic peak performance

 Energy-efficient, sustainable compute for long running workloads

 Multi-processing

 Get ahead of the limits on single thread performance

 Avoid thermal constraints on performance

Takeaways

10

NEON and SIMD

Matt DuPuy

Staff Software Engineer, ARM

11

Single Instruction Multiple Data

background image by Jan Mehlich - licenced under CC-SA

http://en.wikipedia.org/wiki/File:Neon.JPG
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en

12

 Extension of the ARM® instruction set

 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide in ARMv7)

 NEON Instructions perform “Packed SIMD” processing

 Registers are considered as vectors of elements of the same data type

 Data types: signed/unsigned 8-bit,16-bit,32-bit,64-bit, single/double prec., floating or integer

 Instructions perform the same operation in all lanes

NEON is a wide SIMD data processing architecture

13

General purpose SIMD processing useful for many applications

 Supports widest range multimedia codecs used for internet applications

 ▪Many soft codec standards: MPEG-4, H.264, On2 VP6/7/8/9, Real, AVS, …

 ▪Supports all internet and digital home standards in software

 Fewer cycles needed

 ▪NEON will give 1.6x-2.5x performance on complex video codecs

 ▪Individual simple DSP algorithms can show larger performance boost (4x-8x)

 ▪Processor can sleep sooner => overall dynamic power saving

 Straightforward to program

 ▪Clean orthogonal vector architecture

 ▪Applicable to a wide range of data intensive computation.

 ▪Not just for codecs – applicable to 2D/3D graphics and other processing

 ▪Off-the-shelf Tools, OS, commercial & open source ecosystem support

14

Specific media intensive test case using Android NDK

15

http://szeged.github.com/nevada/

NEON Visualizer

http://szeged.github.com/nevada/
http://szeged.github.com/nevada/

16

 Google WebM – 11,000 lines NEON assembler!

 Bluez – official Linux Bluetooth protocol stack

 Pixman (part of cairo 2D graphics library)

 ffmpeg (libav) – libavcodec

 LGPL media player used in many Linux distros and products

 Extensive NEON optimizations

 x264 – Google Summer Of Code 2009

 GPL H.264 encoder – e.g. for video conferencing

 Android – NEON optimizations

 Skia library, S32A_D565_Opaque 5x faster using NEON

 Available in Google Skia tree from 03-Aug-2009

 LLVM – code generation backend used by Android RenderScript

 Eigen2 – C++ vector math / linear algebra template library

 TheorARM – libtheora NEON version (optimized by Google)

 libjpeg / libjpeg-turbo – optimized JPEG decode

 libpng – optimized PNG decode

 FFTW – NEON enabled FFT library

 Liboil / liborc – runtime compiler for SIMD processing

 webkit/blink – used by Chrome Browser

Don’t Reinvent the wheel! NEON in Open Source Today

17

Optimization Paths for Neon

 Opensource libraries, e.g. OpenMAX, libav, libjpeg, Android Skia, etc.
 Freely available Open Source optimizations

 Vectorizing Compilers
 Exploits NEON SIMD automatically with existing source code

 Status: Released (in DS-5 armcc, CodeSourcery, Linaro gcc and now LLVM)

 NEON C Instrinsics
 C function call interface to NEON operations

 Supports all data types and operations supported by NEON

 Status: Released (in DS-5 and gcc), LLVM/Clang under development

 Assembler
 For those who really want to optimize at the lowest level

 Status: Released (in DS-5 and gcc/gas)

 Commercial vendors
 Optimized and supported off-the-shelf packages

18

Introducing NE10

 Ne10 is designed to provide a set of
common, useful functions which

 have been optimised for ARMv7 and NEON, many
v8 functions available in intrinsic C

 provide consistent well tested behaviour

 and that can be easily incorporated into
applications

 Is targeted at Android and Linux to maximize app
performance and tested under iOS

 Features

 Usable from C/C++ and Java/JNI

 The library is modular; functionality that is not
required within an App can be discarded

 Functions similar to the Accelerate Framework
provided by iOS

 It is Free

 No commercial complications- ‘build and ship’

BSD License

 well-tested behavior with example code

 Use of the Ne10 library should be a

joy, not a chore

 Out-of-box and user experience is critical to

success

 Build and go, accessible documentation, clear

code

 Supported by ARM, community contributions

welcome

19

20

64-bit Is the New Black

Jesse Barker

Principal Software Engineer, ARM

21

 ARMv{Version/Extension/Class} – Generic Architecture Name

 ARMv8-A – ARM architecture version 8, application class

 AArch64 – 64-bit execution state

 A64 – ARM instruction set

 LP64 – 64-bit data model

 ILP32 – 32-bit data model

 AArch32 – 32-bit execution state

 A32 – ARM instruction set

 T32 – Thumb instruction set

 ILP32 – 32-bit data model

 Interprocessing – Interaction of execution environments

A Little Taxonomy

22

A Little Perspective
Use this one or previous one?

23

A Closer Look

 ARMv8-A is one of the most significant

architecture changes in ARM’s history

 AArch64 can access ALL ARMv8-A

features
 Larger address space (>4GB memory for Application)

 Wider data register (64-bit)

 Better SIMD (NEON)

 New Crypto Instructions

 More data registers (31 general, 32 FP/SIMD/Crypto)

 More…

 In the long term, delivers an unified

architecture across Mobile, Client

(Table/Desktop) and Enterprise markets

24

Exception Levels & Interprocessing

25

 Moving to ARMv8-A

 No swap instruction, CP15 barriers, load/store multiple

 Load/store pair

 Moving to A64

 Mnemonically similar to A32

 More and larger registers

 No instruction predication

 Conditional select

 Dedicated return instructions

 Why move?

 Significant performance gains come with ARMv8-A

So, You Have a 32-bit Application…

26

 Beware of

 Object sizes in LP64

 Casting between pointer and non-pointer types

 Implicit type/size conversions

 Bit-wise manipulations

 Magic numbers

 Multiarch can be your friend

 Trust your compiler!

But You Do Not Use Assembly Language

27

 ARM is actively involved in two major Open Source Compilers

 LLVM

 AArch64 supported upstream as of LLVM 3.3

 Ongoing work to address outstanding defects

 OpenCL™ support

 Buildbots available http://lab.llvm.org:8011/builders/

 GCC

 AArch64 supported upstream as of GCC 4.8

 Support for dynamic linking, TLS, cross-compiler and glibc

 Support for C/C++ ABI and PCS

 ARM® NEON™ auto-vectorization and intrinsics

Toolchains

http://lab.llvm.org:8011/builders/

28

Questions?

29

Thank You!

