
Efficient usage
of compute shaders
on Xbox One and PS4

Alexis Vaisse
Lead Programmer – Ubisoft Montpellier

Motion Cloth

• Cloth simulation developed by Ubisoft

• Used in:

3 / 122

Agenda
• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts – A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
4 / 122

What is this talk about?

• Cloth simulation ported to the GPU

• For PC DirectX 11, Xbox One and PS4

5 / 122

What is this talk about?

• Cloth simulation ported to the GPU

• For PC DirectX 11, Xbox One and PS4

• This talk is about all that we have learned
during this adventure

6 / 122

7 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
8 / 122

9 / 122

of
dancers

Xbox360 34

5 ms of CPU time

Why porting a cloth simulation to the GPU?

10 / 122

of
dancers

Xbox360 34

PS3 105

SPUs
rock!

of
dancers

Xbox360 34

5 ms of CPU time

Why porting a cloth simulation to the GPU?

11 / 122

of
dancers

Xbox360 34

PS3 105

5 ms of CPU time

Why porting a cloth simulation to the GPU?

12 / 122

Now
let’s switch
to next gen!

of
dancers

Xbox360 34

PS3 105

PS4 98

of
dancers

Xbox360 34

PS3 105

5 ms of CPU time

WTF?

Why porting a cloth simulation to the GPU?

13 / 122

of
dancers

Xbox360 34

PS3 105

PS4 98

of
dancers

Xbox360 34

PS3 105

5 ms of CPU time

Why porting a cloth simulation to the GPU?

14 / 122

5 SPUs

@ 3.2 GHz

6 cores

@ 1.6 GHz

of
dancers

Xbox360 34

PS3 105

PS4 98

Xbox One 113

of
dancers

Xbox360 34

PS3 105

PS4 98

5 ms of CPU time

Why porting a cloth simulation to the GPU?

15 / 122

0

20

40

60

80

100

120

Xbox360 PS3 PS4 CPU Xbox One CPU

Next gen doesn’t look sexy!

Why porting a cloth simulation to the GPU?

16 / 122

What is the
solution?

17 / 122

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

Xbox One PS4
Gflops Gflops

Peak power:

Why porting a cloth simulation to the GPU?

18 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
19 / 122

Easy to use

Not available on all platforms

The first attempts

20 / 122

Easy to use

Close to C++

DirectCompute

Not available on all platforms

Black box: no possibility to
know what’s going on

The first attempts

21 / 122

The first attempts

Resolve some constraints

Integrate velocity

Resolve collisions

Resolve some more constraints

Do some other funny stuffs

…
22 / 122

The first attempts

Resolve some constraints

Integrate velocity

Resolve collisions

Resolve some more constraints

Do some other funny stuffs

…

Compute Shader

Compute Shader

Compute Shader

Compute Shader

Compute Shader

Compute Shader
23 / 122

The first attempts

0%

20%

40%

60%

80%

100%

120%

140%

CPU GPU

5%

Too many “Dispatch”

24 / 122

The first attempts

0%

20%

40%

60%

80%

100%

120%

140%

CPU GPU

5%

Too many “Dispatch”

Bottleneck = CPU

25 / 122

The first attempts

Merge several cloth items to
get better performance

0%

20%

40%

60%

80%

100%

120%

140%

CPU GPU

27% All cloth items must have
the same properties

26 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
27 / 122

A new approach
• A single huge compute shader to

simulate the entire cloth

• Synchronization points inside the shader

• A single “Dispatch” instead of 50+

28 / 122

A new approach
• A single huge compute shader to

simulate the entire cloth

• Synchronization points inside the shader

• A single “Dispatch” instead of 50+

• Simulate several cloth items (up to 32)
using a single “Dispatch” 0%

50%

100%

150%

200%

CPU GPU

160%

29 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
30 / 122

The shader

• 41 .hlsl files

• 3,100 lines of code

 (+ 800 lines for unit tests & benchmarks)

• Compiled shader code size = 69 KB

31 / 122

The shader – Easy parts

0 1 2 3 4 5 63
…

• Thread group:

• We do the same operation on 64 vertices at a time

32 / 122

There must be no dependency between the threads

The shader – Easy parts

Read some global properties to apply (ex: gravity, wind)

Read position
of vertex 0

Read position
of vertex 1

Read position
of vertex 63

…

33 / 122

The shader – Easy parts

Read some global properties to apply (ex: gravity, wind)

Read position
of vertex 0

Read position
of vertex 1

Read position
of vertex 63

…
Compute Compute Compute …

Write position
of vertex 0

Write position
of vertex 1

Write position
of vertex 63

…
34 / 122

The shader – Easy parts

Read some global properties to apply (ex: gravity, wind)

Read position
of vertex 64

Read position
of vertex 65

Read position
of vertex 127

…
Compute Compute Compute …

Write position
of vertex 64

Write position
of vertex 65

Write position
of vertex 127

…
35 / 122

The shader – Easy parts

Read property
for vertex 0

Read position
of vertex 0

Read position
of vertex 1

Read position
of vertex 63

…
Read property
for vertex 1

… Read property
for vertex 63

36 / 122

The shader – Easy parts

Read property
for vertex 0

Read position
of vertex 0

Read position
of vertex 1

Read position
of vertex 63

…

Compute Compute Compute …
Write position

of vertex 0
Write position

of vertex 1
Write position
of vertex 63

…

Read property
for vertex 1

… Read property
for vertex 63

37 / 122

The shader – Easy parts

Read property
for vertex 0

Read property
for vertex 1

… Read property
for vertex 63

Ensure contiguous reads to get good performance

38 / 122

The shader – Easy parts

Read property
for vertex 0

Read property
for vertex 1

… Read property
for vertex 63

Ensure contiguous reads to get good performance

 Coalescing = 1 read instead of 16

i.e. use Structure of Arrays (SoA) instead of Array of
Structures (AoS)

39 / 122

The shader – Complex parts

• Binary constraints:

Constraint

Vertex A Vertex B

40 / 122

The shader – Complex parts

• Binary constraints:

41 / 122

The shader – Complex parts

• Binary constraints:

42 / 122

The shader – Complex parts

• Binary constraints:

? ?

?

43 / 122

The shader – Complex parts

• Binary constraints:

44 / 122

The shader – Complex parts

• Binary constraints: Group 1

45 / 122

The shader – Complex parts

• Binary constraints: Group 1

Group 2

46 / 122

The shader – Complex parts

• Binary constraints: Group 1

Group 2

Group 3

47 / 122

The shader – Complex parts

• Binary constraints: Group 1

Group 2

Group 3

Group 4

GroupMemoryBarrierWithGroupSync()

GroupMemoryBarrierWithGroupSync()

GroupMemoryBarrierWithGroupSync()

48 / 122

The shader – Complex parts
• Collisions: Easy or not?

• Collisions with vertices Easy

49 / 122

The shader – Complex parts
• Collisions: Easy or not?

• Collisions with vertices Easy

• Collisions with triangles

Each thread will modify the
position of 3 vertices

You have to create groups
and add synchronization

50 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
51 / 122

Optimizing the shader
• General rule:

CPU

Vertex
128 bits
(4 floats)

Bottleneck = memory bandwidth

• Data compression:

52 / 122

Optimizing the shader
• General rule:

CPU

Vertex
128 bits
(4 floats)

Normal
128 bits
(4 floats)

Bottleneck = memory bandwidth

• Data compression:

53 / 122

Optimizing the shader
• General rule:

CPU GPU

Vertex
128 bits
(4 floats)

64 bits
(21:21:21:1)

Normal
128 bits
(4 floats)

Bottleneck = memory bandwidth

• Data compression:

54 / 122

Optimizing the shader
• General rule:

CPU GPU

Vertex
128 bits
(4 floats)

64 bits
(21:21:21:1)

Normal
128 bits
(4 floats)

32 bits
(10:10:10)

0%

100%

200%

300%

GPU -

No compression

GPU -

Compression

x2.3
Bottleneck = memory bandwidth

• Data compression:

55 / 122

Optimizing the shader
• Use Local Data Storage (aka Local Shared Memory)

CU CU CU CU

VRAM

CU CU CU CU

64 KB
LDS

Compute Unit
(12 on Xbox One,

18 on PS4)

56 / 122

Optimizing the shader
• Store vertices in Local Data Storage

57 / 122

Copy vertices from VRAM to LDS

Optimizing the shader
• Store vertices in Local Data Storage

Copy vertices from VRAM to LDS

Step 1 – Update vertices

Step 2 – Update vertices

Step n – Update vertices

Copy vertices from LDS to VRAM

…
0%

50%

100%

150%

200%

VRAM LDS

x1.9

58 / 122

Optimizing the shader
• Use bigger

thread groups

0 1 2 3 4 5 63
…

Load

Wait

Compute

59 / 122

Optimizing the shader
• Use bigger

thread groups

0 1 2 3 4 5 63
…

Load

Wait

Compute

Load

Wait

Compute
60 / 122

Optimizing the shader
• Use bigger

thread groups

0 1 2 3 4 5 63
…

64 127

…
Load

Load

61 / 122

Optimizing the shader
• Use bigger

thread groups

0 1 2 3 4 5 63
…

64 127

…
Load

Load
With 256 or
512 threads,
we hide most
of the latency!

Compute

Compute

62 / 122

Optimizing the shader
0 1 2 3 4 5 63

…

Dummy vertices

63 / 122

Optimizing the shader
0 1 2 3 4 5 63

…

Dummy vertices
=

Useless work!

64 / 122

Optimizing the shader
0 1 2 3 4 5 63

…
64 127

…

65 / 122

Optimizing the shader
0 1 2 3 4 5 63

…
64 127

…
128 191

…
192 255

…

66 / 122

Optimizing the shader

0

20

40

60

80

100

120

140

160

180

64

128

256

512

Performance (higher = better)

Cloth’s
vertices

67 / 122

Optimizing the shader

0

20

40

60

80

100

120

140

160

180

64

128

256

512

Performance (higher = better)

Cloth’s
vertices

68 / 122

Optimizing the shader

0

20

40

60

80

100

120

140

160

180

64

128

256

512

Performance (higher = better)

Cloth’s
vertices

69 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
70 / 122

The PS4 version
• Port from HLSL to PSSL

#ifdef __PSSL__

 #define numthreads NUM_THREADS

 #define SV_GroupIndex S_GROUP_INDEX

 #define SV_GroupID S_GROUP_ID

 #define StructuredBuffer RegularBuffer

 #define RWStructuredBuffer RW_RegularBuffer

 #define ByteAddressBuffer ByteBuffer

 #define RWByteAddressBuffer RW_ByteBuffer

 #define GroupMemoryBarrierWithGroupSync ThreadGroupMemoryBarrierSync

 #define groupshared thread_group_memory

#endif

71 / 122

The PS4 version
• On DirectX 11:

Compute
shader

Buffer

Compute
shader

Synchronization

Buffer

CopyResource

Synchronization

72 / 122

1 2

3

Buffer

The PS4 version
• On DirectX 11:

Compute
shader

Buffer

Compute
shader

Synchronization

Buffer

CopyResource

Synchronization

Copy

73 / 122

1 2

3

The PS4 version
• On PS4:

No implicit synchronization, no implicit buffer duplication

You have to manage everything by yourself

Potentially better performance because you know when

you have to sync or not

74 / 122

The PS4 version
• We use labels to know if a buffer is still in use

by the GPU

• Still used  Automatically allocate a new buffer

• “Used” means used by a compute shader or a copy

• We also use labels to know when a compute shader
has finished, to copy the results

75 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
76 / 122

What you can do in compute shader

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

Xbox One PS4
Gflops Gflops

Peak power:

77 / 122

• Using DirectCompute, you can do almost
everything in compute shader

• The difficulty is to get good performance

What you can do in compute shader

78 / 122

• Efficient code = you work on 64+ data at a time

What you can do in compute shader

if (threadIndex < 32)

{

 …

};

if (threadIndex == 0)

{

 …

};

79 / 122

• Efficient code = you work on 64+ data at a time

What you can do in compute shader

if (threadIndex < 32)

{

 …

};

if (threadIndex == 0)

{

 …

};

// Read the same data on all threads

…

This is likely
to be the
bottleneck

80 / 122

• Example: collisions

• On the CPU:

What you can do in compute shader

Compute a bounding volume
(ex: Axis-Aligned Bounding Box)

Use it for an early rejection test

81 / 122

• Example: collisions

• On the CPU:

What you can do in compute shader

Compute a bounding volume
(ex: Axis-Aligned Bounding Box)

Use it for an early rejection test

Use an acceleration structure
(ex: AABB Tree) to improve performance

82 / 122

• Example: collisions

• On the GPU:

What you can do in compute shader

Compute a bounding volume
(ex: Axis-Aligned Bounding Box)

Just doing this can be more costly than
computing the collision with all vertices!!!

83 / 122

//upload.wikimedia.org/wikipedia/en/0/09/Stopsign_sing.png

What you can do in compute shader
• Compute 64 sub-AABoxes 0 1 2 3 4 5 63

…

84 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes 0 1 2 3 4 5 63

…

85 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes
0 1 2 3 4 5 63

…

We use only 32
threads for that

86 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes

• Reduce down to 16 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 16
threads for that

87 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes

• Reduce down to 16 sub-AABoxes

• Reduce down to 8 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 8
threads for that

88 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes

• Reduce down to 16 sub-AABoxes

• Reduce down to 8 sub-AABoxes

• Reduce down to 4 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 4
threads for that

89 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes

• Reduce down to 16 sub-AABoxes

• Reduce down to 8 sub-AABoxes

• Reduce down to 4 sub-AABoxes

• Reduce down to 2 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 2
threads for that

90 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes

• Reduce down to 16 sub-AABoxes

• Reduce down to 8 sub-AABoxes

• Reduce down to 4 sub-AABoxes

• Reduce down to 2 sub-AABoxes

• Reduce down to 1 AABox

0 1 2 3 4 5 63
…

We use a single
thread for that

91 / 122

What you can do in compute shader
• Compute 64 sub-AABoxes

• Reduce down to 32 sub-AABoxes

• Reduce down to 16 sub-AABoxes

• Reduce down to 8 sub-AABoxes

• Reduce down to 4 sub-AABoxes

• Reduce down to 2 sub-AABoxes

• Reduce down to 1 AABox

This is ~ as
costly as

computing the
collision with
7 x 64 = 448

vertices!!

92 / 122

• Atomic functions are available

• You can write lock-free thread-safe containers

• Too costly in practice

What you can do in compute shader

93 / 122

• Atomic functions are available

• You can write lock-free thread-safe containers

• Too costly in practice

What you can do in compute shader

The brute-force approach is
almost always the fastest one

94 / 122

• Atomic functions are available

• You can write lock-free thread-safe containers

• Too costly in practice

What you can do in compute shader

The brute-force approach is
almost always the fastest one

• Bandwidth usage

• Data compression

• Memory coalescing

• LDS usage

95 / 122

What you can do in compute shader

Port an algorithm to the GPU
only if you find a way

to handle 64+ data at a time
95+% of the time

96 / 122

• What is this talk about?

• Why porting a cloth simulation to the GPU?

• The first attempts

• A new approach

• The shader – Easy parts – Complex parts

• Optimizing the shader

• The PS4 version

• What you can do & cannot do in compute shader

• Tips & tricks
97 / 122

Sharing code between C++ & hlsl

#if defined(_WIN32) || defined(_WIN64)

 || defined(_DURANGO) || defined(__ORBIS__)

 typedef unsigned long uint;

 struct float2 { float x, y; };

 struct float3 { float x, y, z; };

 struct float4 { float x, y, z, w; };

 struct uint2 { uint x, y; };

 struct uint3 { uint x, y, w; };

 struct uint4 { uint x, y, z, w; };

#endif

98 / 122

Debug buffer
struct DebugBuffer

{

 …

};

99 / 122

Debug buffer
struct DebugBuffer

{

 …

};

// Uncomment the following line

// to use the debug buffer

#define USE_DEBUG_BUFFER

#ifdef USE_DEBUG_BUFFER

 RWStructuredBuffer<DebugBuffer> g_DebugBuffer : register(u1);

#endif

float3 m_Velocity;

float m_Weight;

100 / 122

Debug buffer
struct DebugBuffer

{

 …

};

// Uncomment the following line

// to use the debug buffer

#define USE_DEBUG_BUFFER

#ifdef USE_DEBUG_BUFFER

 RWStructuredBuffer<DebugBuffer> g_DebugBuffer : register(u1);

#endif

float3 m_Velocity;

float m_Weight;

WRITE_IN_DEBUG_BUFFER(m_Velocity, threadIndex, value);

DebugBuffer *debugBuffer = GetDebugBuffer();
101 / 122

What to put in LDS?

LDS
No Random

access?

Yes

102 / 122

What to put in LDS?

LDS
Yes No

Yes
VRAM

Contiguous
access

No

Random
access?

Accessed
several
times?

103 / 122

Memory consumption in LDS

104 / 122

• LDS = 64 KB per compute unit

• 1 thread group can access 32 KB

Memory consumption in LDS

105 / 122

• LDS = 64 KB per compute unit

• 1 thread group can access 32 KB

2 thread groups can run
simultaneously on the same
compute unit

32 32

Memory consumption in LDS

106 / 122

• LDS = 64 KB per compute unit

• 1 thread group can access 32 KB

2 thread groups can run
simultaneously on the same
compute unit

• Less memory used in LDS

More thread groups can run in parallel

32 32

Memory consumption in LDS

107 / 122

• LDS = 64 KB per compute unit

• 1 thread group can access 32 KB

2 thread groups can run
simultaneously on the same
compute unit

• Less memory used in LDS

More thread groups can run in parallel

32 32

21 21 21

16 16 16 16

Memory consumption in LDS

108 / 122

• LDS = 64 KB per compute unit

• 1 thread group can access 32 KB

2 thread groups can run
simultaneously on the same
compute unit

• Less memory used in LDS

More thread groups can run in parallel

32 32

21 21 21

16 16 16 16

Optimizing bank access in LDS?

109 / 122

• LDS is divided into several banks (16 or 32)

• 2 threads accessing the same bank  Conflict

Optimizing bank access in LDS?

110 / 122

• LDS is divided into several banks (16 or 32)

• 2 threads accessing the same bank  Conflict

Visible impact on performance on older PC
hardware

Negligible on Xbox One, PS4 and newer PC
hardware

Beware the compiler
//CopyFromVRAMToLDS();

//ReadInputFromLDS();

//DoSomeComputations();

//WriteOutputToLDS();

//ReadInputFromLDS();

//DoSomeComputations();

//WriteOutputToLDS();

//CopyFromLDSToVRAM();

CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

CopyFromLDSToVRAM();

111 / 122

Beware the compiler

//WriteOutputToLDS();

//ReadInputFromLDS();

//DoSomeComputations();

//WriteOutputToLDS();

//CopyFromLDSToVRAM();

CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

112 / 122

Beware the compiler
CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

CopyFromLDSToVRAM();

The last copy
takes all the time

This doesn’t
make sense!

113 / 122

Beware the compiler
CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

//CopyFromLDSToVRAM();

114 / 122

Optimizing compilation time
float3 fanBlades[10];

for (uint i = 0; i < 10; ++i)

{

 Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]);

 fanBlades[i] = fanVertex.m_Position - fanCenter.m_Position;

}

float3 normalAccumulator = cross(fanBlades[0], fanBlades[1]);

for (uint j = 0; j < 8; ++j)

{

 float3 triangleNormal = cross(fanBlades[j+1], fanBlades[j+2]);

 uint isTriangleFilled = neighborFan.m_FilledFlags & (1 << j);

 if (isTriangleFilled) normalAccumulator += triangleNormal;

}
115 / 122

Optimizing compilation time
float3 fanBlades[10];

for (uint i = 0; i < 10; ++i)

{

 Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]);

 fanBlades[i] = fanVertex.m_Position - fanCenter.m_Position;

}

float3 normalAccumulator = cross(fanBlades[0], fanBlades[1]);

for (uint j = 0; j < 8; ++j)

{

 float3 triangleNormal = cross(fanBlades[j+1], fanBlades[j+2]);

 uint isTriangleFilled = neighborFan.m_FilledFlags & (1 << j);

 if (isTriangleFilled) normalAccumulator += triangleNormal;

}
116 / 122

Optimizing compilation time
float3 fanBlades[10];

for (uint i = 0; i < 10; ++i)

{

 Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]);

 fanBlades[i] = fanVertex.m_Position - fanCenter.m_Position;

}

float3 normalAccumulator = cross(fanBlades[0], fanBlades[1]);

for (uint j = 0; j < 8; ++j)

{

 float3 triangleNormal = cross(fanBlades[j+1], fanBlades[j+2]);

 uint isTriangleFilled = neighborFan.m_FilledFlags & (1 << j);

 if (isTriangleFilled) normalAccumulator += triangleNormal;

}

Shader compilation time

Loop 19”

Manually unrolled 6”

117 / 122

Iteration time
• It’s really hard to know which code will run the fastest.

• The “best” method:

• Write 10 versions of your feature.

• Test them.

• Keep the fastest one.

118 / 122

Iteration time
• It’s really hard to know which code will run the fastest.

• The “best” method:

• Write 10 versions of your feature.

• Test them.

• Keep the fastest one.

• A fast iteration time really helps

119 / 122

Bonus: final performance

0

200

400

600

800

1000

1200

1400

1600

Xbox360 PS3 PS4 CPU Xbox
One CPU

PS4 GPU Xbox
One GPU

34 105 98 113

1600

830

Next gen can be sexy after all!

120 / 122

121 / 122

PS4 – 2 ms of GPU time – 640 dancers

Thank you!

Questions?

122 / 122

