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Motion Cloth 

• Cloth simulation developed by Ubisoft 

• Used in: 
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Agenda 
• What is this talk about? 

• Why porting a cloth simulation to the GPU? 

• The first attempts – A new approach 
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What is this talk about? 

• Cloth simulation ported to the GPU 

• For PC DirectX 11, Xbox One and PS4 
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What is this talk about? 

• Cloth simulation ported to the GPU 

• For PC DirectX 11, Xbox One and PS4 

 

• This talk is about all that we have learned 
during this adventure 
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# of 
dancers 

Xbox360 34 

5 ms of CPU time 

Why porting a cloth simulation to the GPU? 
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Now 
let’s switch 
to next gen! 



# of 
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5 SPUs 

@ 3.2 GHz 

6 cores 

@ 1.6 GHz 
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What is the 
solution? 
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• What is this talk about? 

• Why porting a cloth simulation to the GPU? 

• The first attempts 

• A new approach 
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• The PS4 version 
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Easy to use 

Not available on all platforms 

The first attempts 
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Easy to use 

Close to C++ 

DirectCompute 

Not available on all platforms 

Black box: no possibility to 
know what’s going on 

The first attempts 
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The first attempts 

Resolve some constraints 

Integrate velocity 

Resolve collisions 

Resolve some more constraints 

Do some other funny stuffs 

… 
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The first attempts 

Resolve some constraints 

Integrate velocity 

Resolve collisions 

Resolve some more constraints 

Do some other funny stuffs 

… 

Compute Shader 

Compute Shader 

Compute Shader 

Compute Shader 

Compute Shader 

Compute Shader 
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The first attempts 
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The first attempts 

Merge several cloth items to 
get better performance 
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A new approach 
• A single huge compute shader to 

simulate the entire cloth 

• Synchronization points inside the shader 

• A single “Dispatch” instead of 50+ 
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A new approach 
• A single huge compute shader to 

simulate the entire cloth 

• Synchronization points inside the shader 

• A single “Dispatch” instead of 50+ 

• Simulate several cloth items (up to 32) 
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The shader 

• 41 .hlsl files 

• 3,100 lines of code 

 (+ 800 lines for unit tests & benchmarks) 

• Compiled shader code size = 69 KB 
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The shader – Easy parts 

0 1 2 3 4 5 63 
… 

• Thread group: 

 

• We do the same operation on 64 vertices at a time 
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There must be no dependency between the threads 



The shader – Easy parts 

Read some global properties to apply (ex: gravity, wind) 

Read position 
of vertex 0 

Read position 
of vertex 1 

Read position 
of vertex 63 

… 
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The shader – Easy parts 

Read some global properties to apply (ex: gravity, wind) 

Read position 
of vertex 0 

Read position 
of vertex 1 

Read position 
of vertex 63 

… 
Compute Compute Compute … 

Write position 
of vertex 0 

Write position 
of vertex 1 

Write position 
of vertex 63 

… 
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The shader – Easy parts 

Read some global properties to apply (ex: gravity, wind) 

Read position 
of vertex 64 

Read position 
of vertex 65 

Read position 
of vertex 127 

… 
Compute Compute Compute … 

Write position 
of vertex 64 

Write position 
of vertex 65 

Write position 
of vertex 127 

… 
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The shader – Easy parts 

Read property 
for vertex 0 

Read position 
of vertex 0 

Read position 
of vertex 1 

Read position 
of vertex 63 

… 
Read property 
for vertex 1 

… Read property 
for vertex 63 
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The shader – Easy parts 

Read property 
for vertex 0 

Read position 
of vertex 0 

Read position 
of vertex 1 

Read position 
of vertex 63 

… 

Compute Compute Compute … 
Write position 

of vertex 0 
Write position 

of vertex 1 
Write position 
of vertex 63 

… 

Read property 
for vertex 1 

… Read property 
for vertex 63 
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The shader – Easy parts 

Read property 
for vertex 0 

Read property 
for vertex 1 

… Read property 
for vertex 63 

Ensure contiguous reads to get good performance 
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The shader – Easy parts 

Read property 
for vertex 0 

Read property 
for vertex 1 

… Read property 
for vertex 63 

Ensure contiguous reads to get good performance 

        Coalescing = 1 read instead of 16 

i.e. use Structure of Arrays (SoA) instead of Array of 
Structures (AoS) 
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The shader – Complex parts 

• Binary constraints: 

Constraint 

Vertex A Vertex B 
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The shader – Complex parts 

• Binary constraints: 
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The shader – Complex parts 

• Binary constraints: 
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The shader – Complex parts 

• Binary constraints: 

? ? 

? 
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The shader – Complex parts 

• Binary constraints: 
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The shader – Complex parts 

• Binary constraints: Group 1 
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The shader – Complex parts 

• Binary constraints: Group 1 

Group 2 
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The shader – Complex parts 

• Binary constraints: Group 1 

Group 2 

Group 3 
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The shader – Complex parts 

• Binary constraints: Group 1 

Group 2 

Group 3 

Group 4 

GroupMemoryBarrierWithGroupSync() 

GroupMemoryBarrierWithGroupSync() 

GroupMemoryBarrierWithGroupSync() 
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The shader – Complex parts 
• Collisions: Easy or not? 

• Collisions with vertices Easy 
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The shader – Complex parts 
• Collisions: Easy or not? 

• Collisions with vertices Easy 

• Collisions with triangles 

Each thread will modify the 
position of 3 vertices 

You have to create groups 
and add synchronization 
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• What is this talk about? 

• Why porting a cloth simulation to the GPU? 

• The first attempts 

• A new approach 

• The shader – Easy parts – Complex parts 

• Optimizing the shader 

• The PS4 version 

• What you can do & cannot do in compute shader 

• Tips & tricks 
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Optimizing the shader 
• General rule: 

CPU 

Vertex 
128 bits 
(4 floats) 

Bottleneck = memory bandwidth 

• Data compression: 

52 / 122 



Optimizing the shader 
• General rule: 

CPU 

Vertex 
128 bits 
(4 floats) 

Normal 
128 bits 
(4 floats) 

Bottleneck = memory bandwidth 

• Data compression: 

53 / 122 



Optimizing the shader 
• General rule: 
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Bottleneck = memory bandwidth 

• Data compression: 
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Optimizing the shader 
• General rule: 

CPU GPU 

Vertex 
128 bits 
(4 floats) 

64 bits 
(21:21:21:1) 

Normal 
128 bits 
(4 floats) 

32 bits 
(10:10:10) 
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No compression

GPU -

Compression

x2.3 
Bottleneck = memory bandwidth 

• Data compression: 
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Optimizing the shader 
• Use Local Data Storage (aka Local Shared Memory) 

CU CU CU CU 
 

VRAM 
 

CU CU CU CU 

64 KB 
LDS 

Compute Unit 
(12 on Xbox One, 

18 on PS4) 
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Optimizing the shader 
• Store vertices in Local Data Storage 

57 / 122 

Copy vertices from VRAM to LDS 



Optimizing the shader 
• Store vertices in Local Data Storage 

Copy vertices from VRAM to LDS 

Step 1 – Update vertices 

Step 2 – Update vertices 

Step n – Update vertices 

Copy vertices from LDS to VRAM 

… 
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Optimizing the shader 
• Use bigger 

thread groups 

0 1 2 3 4 5 63 
… 

Load 

Wait 

Compute 
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Optimizing the shader 
• Use bigger 

thread groups 

0 1 2 3 4 5 63 
… 

64     127 

… 
Load 

Load 
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Optimizing the shader 
• Use bigger 

thread groups 

0 1 2 3 4 5 63 
… 

64     127 

… 
Load 

Load 
With 256 or 
512 threads, 
we hide most 
of the latency! 

Compute 

Compute 
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Optimizing the shader 
0 1 2 3 4 5 63 

… 

Dummy vertices 
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Optimizing the shader 
0 1 2 3 4 5 63 

… 

Dummy vertices 
= 

Useless work! 
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Optimizing the shader 
0 1 2 3 4 5 63 

… 
64     127 

… 
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Optimizing the shader 
0 1 2 3 4 5 63 

… 
64     127 

… 
128     191 

… 
192     255 

… 

66 / 122 



Optimizing the shader 
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• What is this talk about? 

• Why porting a cloth simulation to the GPU? 

• The first attempts 

• A new approach 

• The shader – Easy parts – Complex parts 

• Optimizing the shader 

• The PS4 version 

• What you can do & cannot do in compute shader 

• Tips & tricks 
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The PS4 version 
• Port from HLSL to PSSL 

#ifdef __PSSL__ 

    #define numthreads NUM_THREADS 

    #define SV_GroupIndex S_GROUP_INDEX 

    #define SV_GroupID S_GROUP_ID 

    #define StructuredBuffer RegularBuffer  

    #define RWStructuredBuffer RW_RegularBuffer 

    #define ByteAddressBuffer ByteBuffer 

    #define RWByteAddressBuffer RW_ByteBuffer 

    #define GroupMemoryBarrierWithGroupSync ThreadGroupMemoryBarrierSync 

    #define groupshared thread_group_memory 

#endif 
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The PS4 version 
• On DirectX 11: 

Compute 
shader 

Buffer 

Compute 
shader 

Synchronization 

Buffer 

CopyResource 

Synchronization 

72 / 122 

1 2 

3 



Buffer 

The PS4 version 
• On DirectX 11: 

Compute 
shader 

Buffer 

Compute 
shader 

Synchronization 

Buffer 

CopyResource 

Synchronization 

Copy 
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The PS4 version 
• On PS4: 

No implicit synchronization, no implicit buffer duplication 

You have to manage everything by yourself 

Potentially better performance because you know when 

you have to sync or not 
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The PS4 version 
• We use labels to know if a buffer is still in use 

by the GPU 

• Still used  Automatically allocate a new buffer 

• “Used” means used by a compute shader or a copy 

• We also use labels to know when a compute shader 
has finished, to copy the results 
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• What is this talk about? 
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What you can do in compute shader 
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• Using DirectCompute, you can do almost 
everything in compute shader 

• The difficulty is to get good performance 

 

What you can do in compute shader 
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• Efficient code = you work on 64+ data at a time 

 

What you can do in compute shader 

if (threadIndex < 32) 

{ 

   … 

}; 

if (threadIndex == 0) 

{ 

   … 

}; 
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• Efficient code = you work on 64+ data at a time 

 

What you can do in compute shader 

if (threadIndex < 32) 

{ 

   … 

}; 

if (threadIndex == 0) 

{ 

   … 

}; 

// Read the same data on all threads 

… 

This is likely 
to be the 
bottleneck  
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• Example: collisions 

• On the CPU: 

What you can do in compute shader 

Compute a bounding volume 
(ex: Axis-Aligned Bounding Box) 

Use it for an early rejection test 
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• Example: collisions 

• On the CPU: 

What you can do in compute shader 

Compute a bounding volume 
(ex: Axis-Aligned Bounding Box) 

Use it for an early rejection test 

Use an acceleration structure 
(ex: AABB Tree) to improve performance 
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• Example: collisions 

• On the GPU: 

What you can do in compute shader 

Compute a bounding volume 
(ex: Axis-Aligned Bounding Box) 

Just doing this can be more costly than 
computing the collision with all vertices!!! 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 0 1 2 3 4 5 63 

… 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 0 1 2 3 4 5 63 

… 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 
0 1 2 3 4 5 63 

… 

We use only 32 
threads for that 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 

• Reduce down to 16 sub-AABoxes 

0 1 2 3 4 5 63 
… 

We use only 16 
threads for that 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 

• Reduce down to 16 sub-AABoxes 

• Reduce down to 8 sub-AABoxes 

0 1 2 3 4 5 63 
… 

We use only 8 
threads for that 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 

• Reduce down to 16 sub-AABoxes 

• Reduce down to 8 sub-AABoxes 

• Reduce down to 4 sub-AABoxes 

0 1 2 3 4 5 63 
… 

We use only 4 
threads for that 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 

• Reduce down to 16 sub-AABoxes 

• Reduce down to 8 sub-AABoxes 

• Reduce down to 4 sub-AABoxes 

• Reduce down to 2 sub-AABoxes 

0 1 2 3 4 5 63 
… 

We use only 2 
threads for that 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 

• Reduce down to 16 sub-AABoxes 

• Reduce down to 8 sub-AABoxes 

• Reduce down to 4 sub-AABoxes 

• Reduce down to 2 sub-AABoxes 

• Reduce down to 1 AABox 

0 1 2 3 4 5 63 
… 

We use a single 
thread for that 
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What you can do in compute shader 
• Compute 64 sub-AABoxes 

• Reduce down to 32 sub-AABoxes 

• Reduce down to 16 sub-AABoxes 

• Reduce down to 8 sub-AABoxes 

• Reduce down to 4 sub-AABoxes 

• Reduce down to 2 sub-AABoxes 

• Reduce down to 1 AABox 

This is ~ as 
costly as 

computing the 
collision with 
7 x 64 = 448 

vertices!! 
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• Atomic functions are available 

•     You can write lock-free thread-safe containers 

 

• Too costly in practice 

What you can do in compute shader 
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• Atomic functions are available 

•     You can write lock-free thread-safe containers 

 

• Too costly in practice 

What you can do in compute shader 

The brute-force approach is 
almost always the fastest one 
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• Atomic functions are available 

•     You can write lock-free thread-safe containers 

 

• Too costly in practice 

What you can do in compute shader 

The brute-force approach is 
almost always the fastest one 

• Bandwidth usage 

• Data compression 

• Memory coalescing 

• LDS usage 
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What you can do in compute shader 

Port an algorithm to the GPU 
only if you find a way 

to handle 64+ data at a time 
95+% of the time 
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• What is this talk about? 

• Why porting a cloth simulation to the GPU? 

• The first attempts 

• A new approach 

• The shader – Easy parts – Complex parts 

• Optimizing the shader 

• The PS4 version 

• What you can do & cannot do in compute shader 

• Tips & tricks 
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Sharing code between C++ & hlsl 

#if defined( _WIN32) || defined(_WIN64) 

  || defined(_DURANGO) || defined(__ORBIS__) 

 typedef unsigned long uint; 

 struct float2 { float x, y; }; 

 struct float3 { float x, y, z; }; 

 struct float4 { float x, y, z, w; }; 

 struct uint2 { uint x, y; }; 

 struct uint3 { uint x, y, w; }; 

 struct uint4 { uint x, y, z, w; }; 

#endif 
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Debug buffer 
struct DebugBuffer 

{ 

   … 

 

}; 
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Debug buffer 
struct DebugBuffer 

{ 

   … 

 

}; 

// Uncomment the following line 

// to use the debug buffer 

#define USE_DEBUG_BUFFER 

#ifdef USE_DEBUG_BUFFER 

    RWStructuredBuffer<DebugBuffer> g_DebugBuffer : register(u1); 

#endif 

float3 m_Velocity; 

float m_Weight; 
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Debug buffer 
struct DebugBuffer 

{ 

   … 

 

}; 

// Uncomment the following line 

// to use the debug buffer 

#define USE_DEBUG_BUFFER 

#ifdef USE_DEBUG_BUFFER 

    RWStructuredBuffer<DebugBuffer> g_DebugBuffer : register(u1); 

#endif 

float3 m_Velocity; 

float m_Weight; 

WRITE_IN_DEBUG_BUFFER(m_Velocity, threadIndex, value);  

DebugBuffer *debugBuffer = GetDebugBuffer(); 
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What to put in LDS? 

LDS 
No Random 

access? 

Yes 
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What to put in LDS? 

LDS 
Yes No 

Yes 
VRAM 

Contiguous 
access 

No 

Random 
access? 

Accessed 
several 
times? 
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Memory consumption in LDS 
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• LDS = 64 KB per compute unit 

• 1 thread group can access 32 KB 
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2 thread groups can run 
simultaneously on the same 
compute unit 

32 32 
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• Less memory used in LDS 
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• LDS = 64 KB per compute unit 

• 1 thread group can access 32 KB 

2 thread groups can run 
simultaneously on the same 
compute unit 

• Less memory used in LDS 

More thread groups can run in parallel 
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Memory consumption in LDS 
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• LDS = 64 KB per compute unit 

• 1 thread group can access 32 KB 

2 thread groups can run 
simultaneously on the same 
compute unit 

• Less memory used in LDS 

More thread groups can run in parallel 

32 32 

21 21 21 

16 16 16 16 



Optimizing bank access in LDS? 
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• LDS is divided into several banks (16 or 32) 

• 2 threads accessing the same bank  Conflict 



Optimizing bank access in LDS? 
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• LDS is divided into several banks (16 or 32) 

• 2 threads accessing the same bank  Conflict 

Visible impact on performance on older PC 
hardware 

Negligible on Xbox One, PS4 and newer PC 
hardware 



Beware the compiler 
//CopyFromVRAMToLDS(); 

 

//ReadInputFromLDS(); 

//DoSomeComputations(); 

//WriteOutputToLDS(); 
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Beware the compiler 
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Beware the compiler 
CopyFromVRAMToLDS(); 

 

ReadInputFromLDS(); 

DoSomeComputations(); 

WriteOutputToLDS(); 

 

ReadInputFromLDS(); 

DoSomeComputations(); 

WriteOutputToLDS(); 

 

CopyFromLDSToVRAM(); 

The last copy 
takes all the time 

This doesn’t 
make sense! 
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Beware the compiler 
CopyFromVRAMToLDS(); 

 

ReadInputFromLDS(); 

DoSomeComputations(); 

WriteOutputToLDS(); 

 

ReadInputFromLDS(); 

DoSomeComputations(); 

WriteOutputToLDS(); 

 

//CopyFromLDSToVRAM(); 
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Optimizing compilation time 
float3 fanBlades[10]; 

for (uint i = 0; i < 10; ++i) 

{         

    Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]); 

    fanBlades[i] = fanVertex.m_Position - fanCenter.m_Position;         

} 

     

float3 normalAccumulator = cross(fanBlades[0], fanBlades[1]); 

for (uint j = 0; j < 8; ++j) 

{ 

        float3 triangleNormal = cross(fanBlades[j+1], fanBlades[j+2]);          

        uint isTriangleFilled = neighborFan.m_FilledFlags & (1 << j);  

        if (isTriangleFilled) normalAccumulator += triangleNormal; 

} 
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Optimizing compilation time 
float3 fanBlades[10]; 

for (uint i = 0; i < 10; ++i) 
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    Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]); 
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for (uint j = 0; j < 8; ++j) 

{ 
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Optimizing compilation time 
float3 fanBlades[10]; 

for (uint i = 0; i < 10; ++i) 

{         

    Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]); 

    fanBlades[i] = fanVertex.m_Position - fanCenter.m_Position;         

} 

     

float3 normalAccumulator = cross(fanBlades[0], fanBlades[1]); 

for (uint j = 0; j < 8; ++j) 

{ 

        float3 triangleNormal = cross(fanBlades[j+1], fanBlades[j+2]);          

        uint isTriangleFilled = neighborFan.m_FilledFlags & (1 << j);  

        if (isTriangleFilled) normalAccumulator += triangleNormal; 

} 

Shader compilation time 

Loop 19” 

Manually unrolled 6” 
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Iteration time 
• It’s really hard to know which code will run the fastest. 

• The “best” method: 

• Write 10 versions of your feature. 

• Test them. 

• Keep the fastest one. 
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Iteration time 
• It’s really hard to know which code will run the fastest. 

• The “best” method: 

• Write 10 versions of your feature. 

• Test them. 

• Keep the fastest one. 

• A fast iteration time really helps 
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Bonus: final performance 
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Next gen can be sexy after all! 
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PS4 – 2 ms of GPU time – 640 dancers 



Thank you! 

Questions? 
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