
Optimizing Audio for 
Mobile Development
Ben Houge
Berklee College of Music
Music Technology Innovation
Valencia, Spain



Optimizing Audio
• Different from movies or CD’s
• Data size vs. CPU usage
• For every generation, we must optimize
• Maximize quality within constraints



Leisure Suit Larry: Love for Sail!
• MS-DOS 5.2 or Windows 3.1 or greater
• 486 DX2 processor (66 MHz)
• 8 MB RAM (DOS), 12MB (Windows)
• 22 MB Hard drive space
• SVGA, 256 colors
• 1996 specs!



Compare with iPhone 6
• 1 GB of RAM
• 64 bit, dual core 1.38 GHz processor 
• 16-128 GB of hard drive space
• 2014 specs!



Optimizing Audio
• Efficient Spotting and Editing for Games
• Digital Audio Theory and Formats
• Creative Reuse of Audio 
• File Management and Middleware



Efficient Spotting and 
Editing for Games



The best way to save space on 
audio in your game:

Don’t put audio in your game!



Spotting a Game
• Look at the information the game knows
• Think about what’s important to the user
• Don’t assume you need audio all the time
• Prototype and iterate
• Log your sounds and analyze
• Get an audio professional involved early



Editing Sound for a Game
• Trim sounds tightly
• Edit to zero crossings
• Record loud, turn down in software



Audio Quality and File Size



Three Parameters Affect Bitrate
• Sample rate
• Bit depth
• Number of channels



Sample Rate
• Sampling an analog signal from a mic
• Measurement of amplitude
• Linear PCM (uncompressed)
• Sampling rate: how often we sample
• The Nyquist frequency
• CD quality is 44100 Hz



Bit Depth
• Resolution of each sample measurement
• Lower bit depths increase noise
• CD quality is 16 bits



Sample Rate/Bit Depth Demo



Perceptual Audio Coding
• Analyze a signal, throw away frequencies 
we won’t miss.
• Lossy compression: some data is gone 
forever
• Varies based on input: noise compresses 
very little, silence compresses a lot



Examples
• MP3
• Ogg Vorbis
• AAC
• WMA/XMA
• AC3



Perceptual Audio Coding
• Sometimes this can be used for aesthetic 
purposes
• Performance hit for decompressing 
sounds
• Hardware acceleration available on some 
platforms (iPhone, Xbox One…)



Lossless Audio Compression
• Examples

• FLAC
• Apple Lossless

• All data is retained
• Not ideally suited for games



Compress with Care
• Don’t use the same settings for all sounds
• Takes more time, but improves quality
• Keep hi-res version, work from copy



Creative Reuse of Sounds



Benefits of Reuse
• Create new sounds from existing data
• Minimize footprint, maximize variation
• Map audio parameters on to game data
• Close synchronization and immersion



Example: footstep sounds
• Choosing from a set of sounds randomly
• Real-time manipulation of pitch, volume
• Emulating the physics of the natural world
• Very efficient in terms of CPU



Example: Combinatoriality
• Multiple layers of random sounds
• Exponential increase in combinations
• Consistency also increases
• Still very efficient



Example: Randomizing Loops
• Infinite variation from a short loop
• Scalability and parameterization
• A kind of granular synthesis



Example: Generative Music
• Multiple independent layers
• Intermittent phrases
• Synchronized to a metronome
• Cued from game events
• Scalable to gameplay



Example: EndWar Loading Music
• Extremely limited resources
• Little memory, no disk access
• Music responded to load times
• xxx kb



Real-Time Effects
• Sophisticated digital signal processing
• Avoids the need for multiple versions
• Scalable with game parameters
• Infinite variety



Effects in EndWar
• Filter and distortion for radio effect
• Filter for distance simulation
• Audio particle system for explosions



Audio Effects in iOS7
kAudioUnitSubType_BandPassFilter
kAudioUnitSubType_DynamicsProcessor
kAudioUnitSubType_Delay
kAudioUnitSubType_AUFilter
kAudioUnitSubType_GraphicEQ
kAudioUnitSubType_HighPassFilter
kAudioUnitSubType_HighShelfFilter
kAudioUnitSubType_PeakLimiter

kAudioUnitSubType_LowPassFilter
kAudioUnitSubType_LowShelfFilter
kAudioUnitSubType_MultiBandCompressor
kAudioUnitSubType_MatrixReverb
kAudioUnitSubType_NetSend
kAudioUnitSubType_ParametricEQ
kAudioUnitSubType_SampleDelay
kAudioUnitSubType_Pitch

Even easier to use with new AVAudioEngine in iOS8!



Synthesis
• Huge topic with much potential
• Like “soft synths” in music production
• More CPU usage, but far less data
• Opportunities for real-time manipulation
• A golden age of MIDI?
• Also for sound effects



File Management and Middleware



Data management for game audio
• Requires organization
• Tracking many small files
• Enforce a naming convention



Audio Engine vs. Game Engine
• Game engine calls sound events
• Audio engine manages sound events
• Audio designer defines audio behavior
• Clear and efficient division of labor



Possible Audio Behaviors
• Play sound, Play multiple sounds, Play 
sound with variations, Stop sound, Play one 
sound while stopping another, Change 
volume on sound, Apply effect, etc.
• Audio implementer doesn’t need to know 
about this; just call the event



Use Middleware
• Most common solutions

• Wwise (Audio Kinetic)
• FMOD

• Big gains for all but the simplest games
• Reasonably priced (in some cases free)
• Available for Android, iOS, and others



Middleware Advantages
• Mix in-game for a tight iteration loop
• Log and profile your audio data use
• Avoid redundancies
• Export for multiple platforms
• Prioritize your sounds
• Incorporate effects plug-ins



Conclusion



Summary
• Spot your game carefully for audio
• Edit your sounds tightly
• Compress sounds individually
• Reuse your sounds creatively
• Track your assets carefully
• Mix and profile your sounds iteratively



Questions?
Ben Houge
Berklee College of Music
Music Technology Innovation

bhouge@berklee.edu
Twitter/微博: @AleaBoy



• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level


