
GOAP in

Chris Conway
Lead AI Engineer, Crystal Dynamics

GOAP in Tomb Raider

• Started in 2006 for unannounced title at the request of our
lead designer, based on his impressions from the GOAP
presentation at GDC 2006.

• First shipped title using it was Tomb Raider 2013 (and now being used for the next Tomb
Raider due in 2015).

GOAP in Tomb Raider

• Started in 2006 for unannounced title at the request of our
lead designer, based on his impressions from the GOAP
presentation at GDC 2006.

• First shipped title using it was Tomb Raider 2013 (and now being used for the next Tomb
Raider due in 2015).

• Most AI development time is spent on code support for
Goals and Actions, not the GOAP library code.

GOAP in Tomb Raider

• Started in 2006 for unannounced title at the request of our
lead designer, based on his impressions from the GOAP
presentation at GDC 2006.

• First shipped title using it was Tomb Raider 2013 (and now being used for the next Tomb
Raider due in 2015).

• Most AI development time is spent on code support for
Goals and Actions, not the GOAP code.

• New GOAP features added as gameplay requirements
changed…

Extensions to GOAP

● Situational Costs for Actions

● Causes a Plan with an inexpensive primary Action to
potentially become expensive due to high situational cost of
an Action for a requirement.

Extensions to GOAP

● Situational Costs for Actions

● Causes a Plan with an inexpensive primary Action to
potentially become expensive due to high situational cost of
an Action for a requirement.

● For example:

● MeleeAttack(cost=1) + Goto(cost=20, due to 20m of movement) = Plan Cost of 21

● RangedAttack(cost=10) + Goto(cost=1, due to 1m of movement) = Plan Cost of 11

Extensions to GOAP

● Situational Costs for Actions

● Causes a Plan with an inexpensive primary Action to
potentially become expensive due to high situational cost of
an Action for a requirement.

● For example:

● MeleeAttack(cost=1) + Goto(cost=20, due to 20m of movement) = Plan Cost of 21

● RangedAttack(cost=10) + Goto(cost=1, due to 1m of movement) = Plan Cost of 11

● Preferable to putting hard limits on attacks because there might be situations where
some attacks are unavailable (e.g. out of ammo, melee weapon destroyed, etc.).

● Situational Costs for Actions, continued…

● Can also be used to vary the costs of Actions depending on
equipment or some other modifier.

● RangedAttack(cost=5 with MachineGun, or 10 with a Bow).

● MeleeAttack(cost=1 with Dual-wielded Swords, or 5 with Fists).

● Situational Costs for Actions, continued…

● Can also be used to vary the costs of Actions depending on
equipment or some other modifier.

● RangedAttack(cost=5 with MachineGun, or 10 with a Bow).

● MeleeAttack(cost=1 with Dual-wielded Swords, or 5 with Fists).

● Useful for creating competing complex (multi-Action) methods of
solving the same requirement(s).

● Goto(cost=20, for 20m) + MeleeAttack(cost=1) = Plan Cost of 21

● TakeOff(cost=1) + FlyTo(cost=4, for 20m) + Land(cost=1) + MeleeAttack(cost=1) = Plan Cost of 7

Motives to drive Goal/Action Availability and Cost

● Very useful for an Action like UseObject that must determine which, of
many, objects an NPC should consider using.

● The object can “advertise” an effect that is different from the change that will happen after
actual usage.

● The system can be tuned to modify motives over time (e.g. Hunger always increases on its
own), or in response to events, in addition to before/during/after Actions such as UseObject.

Motives to drive Goal/Action Availability and Cost

● Very useful for an Action like UseObject that must determine which, of
many, objects an NPC should consider using.

● The object can “advertise” an effect that is different from the change that will happen after
actual usage.

● The system can be tuned to modify motives over time (e.g. Hunger always increases on its
own), or in response to events, in addition to before/during/after Actions such as UseObject.

● Motives can also be used to control Goals.
● For Example, the Investigate Goal might only be available if a motive named Suspicion is

higher than some tunable value.

Motives to drive Goal/Action Availability and Cost

● Very useful for an Action like UseObject that must determine which, of
many, objects an NPC should consider using.

● The object can “advertise” an effect that is different from the change that will happen after
actual usage.

● The system can be tuned to modify motives over time (e.g. Hunger always increases on its
own), or in response to events, in addition to before/during/after Actions such as UseObject.

● Motives can also be used to control Goals.
● For Example, the Investigate Goal might only be available if a motive named Suspicion is

higher than some tunable value.

● Actions without requirements related to motives can still have an effect
on them.

● For example, a successful attack might reduce Fear, which is used to control the Flee Goal.

Submitting Multiple Plan Candidates
● Optionally, a Goal or Action, such as UseObject, can submit multiple requirement

sets (with different values, such as a different object to be used), which the Planner
will then add to the options pool (the set of search options the A* search is working
on) to find the best plan.

Submitting Multiple Plan Candidates
● Optionally, a Goal or Action, such as UseObject, can submit multiple requirement

sets (with different values, such as a different object to be used), which the Planner
will then add to the options pool (the set of search options the A* search is working
on) to find the best plan.

● For example, two or three objects might be found for the UseObject Goal that will help
address a motive that requires attention, and so we will submit a Requirements List for
each, which will then be evaluated as separate plans.

● The closest object might not necessarily be the best to use, because its requirements might require a
more complex plan.

Submitting Multiple Plan Candidates
● Optionally, a Goal or Action, such as UseObject, can submit multiple requirement

sets (with different values, such as a different object to be used), which the Planner
will then add to the options pool (the set of search options the A* search is working
on) to find the best plan.

● For example, two or three objects might be found for the UseObject Goal that will help
address a motive that requires attention, and so we will submit a Requirements List for
each, which will then be evaluated as separate plans.

● The closest object might not necessarily be the best to use, because its requirements might require a
more complex plan.

● Can also be used for multiple targets, to find which one can be attacked for the lowest cost,
with an optional (tunable by Goal) plan score multiplier per requirement list to raise the plan
score for plans whose requirements list specifies a non-preferential target.

Submitting Multiple Plan Candidates
● Optionally, a Goal or Action, such as UseObject, can submit multiple requirement

sets (with different values, such as a different object to be used), which the Planner
will then add to the options pool (the set of search options the A* search is working
on) to find the best plan.

● For example, two or three objects might be found for the UseObject Goal that will help
address a motive that requires attention, and so we will submit a Requirements List for
each, which will then be evaluated as separate plans.

● The closest object might not necessarily be the best to use, because its requirements might require a
more complex plan.

● Can also be used for multiple targets, to find which one can be attacked for the lowest cost,
with an optional (tunable by Goal) plan score multiplier per requirement list to raise the plan
score for plans whose requirements list specifies a non-preferential target.

● Or, for a given Action, two (or more) requirement lists could be submitted (e.g. for
AttackRanged we could submit one option to use the currently-equipped bow and another
that requires equipping a machine gun first).

Situational Requirements
● Some objects can introduce requirements that must be satisfied by the
Planner (in addition to the requirements of the Action that allows usage of
that object).

Situational Requirements
● Some objects can introduce requirements that must be satisfied by the
Planner (in addition to the requirements of the Action that allows usage of
that object).

● For example, a DinnerTable object for the UseObject Goal might have
requirements like Food and Drink that can only be acquired by using other
objects.

● A plan to use DinnerTable could look something like this: GoTo(FoodServer), Use(FoodServer) to get
Food, GoTo(Bar), Use(Bar) to get Drink, GoTo(DinnerTable), Use(DinnerTable).

● Performing an Action might affect our inventory and/or state as well (e.g. after using the DinnerTable
object the Food and Drink are removed, and the Hunger motive is reduced.

Situational Requirements
● Some objects can introduce requirements that must be satisfied by the
Planner (in addition to the requirements of the Action that allows usage of
that object).

● For example, a DinnerTable object for the UseObject Goal might have
requirements like Food and Drink that can only be acquired by using other
objects.

● A plan to use DinnerTable could look something like this: GoTo(FoodServer), Use(FoodServer) to get
Food, GoTo(Bar), Use(Bar) to get Drink, GoTo(DinnerTable), Use(DinnerTable).

● Performing an Action might affect our inventory and/or state as well (e.g. after using the DinnerTable
object the Food and Drink are removed, and the Hunger motive is reduced.

● Or, for example, the RangedAttack Action might require a certain weapon to be used, and that weapon
object will need to be acquired by using another object that advertises that it provides that weapon
object, resulting in a Plan containing a UseObject even though RangedAttack doesn’t explicitly require it.

Monitoring Child Actions
● Enables a parent Action or Goal to mark a child Action’s requirement as
completed before the child Action completes on its own.

● For example, the RangedAttack Action might require that the client must be within 5m of a
target, and then monitor the status of the target to force the child Goto Action to terminate
early (e.g. if the RangedAttack Action determines that the NPC has LineOfSight to the target
within a tunable max ranged attack distance of 10m while the child Action is running).

Monitoring Child Actions
● Enables a parent Action or Goal to mark a child Action’s requirement as
completed before the child Action completes on its own.

● For example, the RangedAttack Action might require that the client must be within 5m of a
target, and then monitor the status of the target to force the child Goto Action to terminate
early (e.g. if the RangedAttack Action determines that the NPC has LineOfSight to the target
within a tunable max ranged attack distance of 10m while the child Action is running).

● Also enables the parent Action or Goal to dynamically change the
requirements while the child action is in progress.

● For example, when the target moves it can change the required end position for the child
Action, or tell it to move to a new CoverPoint that just became available or viable.

● This often forces Actions to monitor their requirements dynamically to make sure they are
still achievable (and/or requires parent Actions or Goals to make sure they don’t modify
existing requirements in such a way that completion is no longer possible).

Evaluating and Communicating the Plan’s State

• A Goal or Action can monitor the status of the Plan while child Actions
are still running and cause it to abort.

• For example, a parent Action could determine the target is no longer valid (e.g. he is now
injured or dead, or the object we intend to use is no longer available), or it is no longer the
best target (e.g. we are now aware of a better target for this Action, so cancel the plan or
switch targets, if applicable).

Evaluating and Communicating the Plan’s State

• A Goal or Action can monitor the status of the Plan while child Actions
are still running and cause it to abort.

• For example, a parent Action could determine the target is no longer valid (e.g. he is now
injured or dead, or the object we intend to use is no longer available), or it is no longer the
best target (e.g. we are now aware of a better target for this Action, so cancel the plan or
switch targets, if applicable).

• The Goal or Action can also use its awareness of the current state of the Plan to
communicate with other NPCs (e.g. notify them that “I’m on my way to that
CoverPoint to attack target X” at an appropriate time while the Plan is active).

Evaluating and Communicating the Plan’s State

• A Goal or Action can monitor the status of the Plan while child Actions
are still running and cause it to abort.

• For example, a parent Action could determine the target is no longer a valid (e.g. he is now
injured or dead, or the object we intend to use is no longer available), or it is no longer the
best target (e.g. we are now aware of a better target for this Action, so cancel the plan or
switch targets, if applicable).

• The Goal or Action can also use its awareness of the current state of the Plan to
communicate with other NPCs (e.g. notify them that “I’m on my way to that
CoverPoint to attack target X” at an appropriate time while the Plan is active).

• The Goal or Action can also use this awareness to provide feedback for the player
(e.g. “You’re in trouble now, I’m going to hit you with a grenade from that hill over
there!”).

Open-Ended Actions
• Actions don’t necessarily need to complete as soon as they have completed one

iteration of the required Action.

• For example, the RangedAttack Action might be tuned to be allowed to take several shots,
and even contain several tasks (such as Reload, StepOutFromCover, StepIntoCover, Aim,
Fire, etc.) that it completes while attempting multiple shots.

Open-Ended Actions
• Actions don’t necessarily need to complete as soon as they have completed one

iteration of the required Action.

• For example, the RangedAttack Action might be tuned to be allowed to take several shots,
and even contain several tasks (such as Reload, StepOutFromCover, StepIntoCover, Aim,
Fire, etc.) that it completes while attempting multiple shots.

• Requires accurate maintenance of “remaining cost” for each Action so re-planning
can still happen for the same Goal.

Open-Ended Actions
• Actions don’t necessarily need to complete as soon as they have completed one

iteration of the required Action.

• For example, the RangedAttack Action might be tuned to be allowed to take several shots,
and even contain several tasks (such as Reload, StepOutFromCover, StepIntoCover, Aim,
Fire, etc.) that it completes while attempting multiple shots.

• Requires accurate maintenance of “remaining cost” for each Action so re-planning
can still happen for the same Goal.

• Prevents repeatedly constructing/starting/finishing an identical Plan for the same
Goal, yet we can still find a different Plan with a lower total cost than the remaining
cost of the current Plan for that Goal.

• For example, an NPC is in a great location to shoot from can keep shooting without re-
planning for each shot. But, if we find ourselves in a situation where we can make a new
Plan for the Attack Goal, such as MeleeAttack, with a lower total cost than the remaining

cost of the Plan we already have for that Goal, we are able to do it.

Learning/Adapting based on Success Rates

● The GOAP system in Tomb Raider keeps track of success

rates for Goals and Actions, and can be tuned to use that to
influence planning.

● For example, an Action such as MeleeAttack might be tuned to have a variable cost
depending on its success rate, which might result in it being used less often (only when the
conditions allow the total cost of a Plan with MeleeAttack to be lower than any competing
Plan, such as one with RangedAttack, for a given Goal), or only when some other less-
expensive option is unavailable (on cooldown, out of ammo, weapon broken, etc.).

Learning/Adapting based on Success Rates

● The GOAP system in Tomb Raider keeps track of success

rates for Goals and Actions, and can be tuned to use that to
influence planning.

● For example, an Action such as MeleeAttack might be tuned to have a variable cost
depending on its success rate, which might result in it being used less often (only when the
conditions allow the total cost of a Plan with MeleeAttack to be lower than any competing
Plan, such as one with RangedAttack, for a given Goal), or only when some other less-
expensive option is unavailable (on cooldown, out of ammo, weapon broken, etc.).

● Statistics can be saved with the game data, or reset at tunable intervals or specific
milestones. They are tracked as part of the “GOAP Settings” (a set of Goals and Actions
with costs and other settings) which are associated with a particular type of NPC.

Learning/Adapting based on Success Rates

● The GOAP system in Tomb Raider keeps track of success

rates for Goals and Actions, and can be tuned to use that to
influence planning.

● For example, an Action such as MeleeAttack might be tuned to have a variable cost
depending on its success rate, which might result in it being used less often (only when the
conditions allow the total cost of a Plan with MeleeAttack to be lower than any competing
Plan, such as one with RangedAttack, for a given Goal), or only when some other less-
expensive option is unavailable (on cooldown, out of ammo, weapon broken, etc.).

● Statistics can be saved with the game data, or reset at tunable intervals or specific
milestones. They are tracked as part of the “GOAP Settings” (a set of Goals and Actions
with costs and other settings) which are associated with a particular type of NPC.

● Requires different GOAP Settings for different NPC types (so melee-centric NPCs are
influenced only by success rates for attacks by other melee-centric NPCs, for example).

Behavior Graph
• We can use a designer-authored Behavior Graph to drive

Goal selection, rather than a prioritized list of Goals. This
enables designers to create tree- or DAG-like logic for
Goal selection depending on the current status of an NPC.

Behavior Graph
• We can use a designer-authored Behavior Graph to drive

Goal selection, rather than a prioritized list of Goals. This
enables designers to create tree- or DAG-like logic for
Goal selection depending on the current status of an NPC.

● For example, an NPC that is in a pre-combat state might have one set of Goals
it considers (with additional logic to cause certain Goals to be evaluated only in
certain situations), and another set of Goals for higher alert levels, including
highly-customized logic for Goal evaluation in combat situations.

Behavior Graph
• We can use a designer-authored Behavior Graph to drive

Goal selection, rather than a prioritized list of Goals. This
enables designers to create tree- or DAG-like logic for
Goal selection depending on the current status of an NPC.

● For example, an NPC that is in a pre-combat state might have one set of Goals
it considers (with additional logic to cause certain Goals to be evaluated only in
certain situations), and another set of Goals for higher alert levels, including
highly-customized logic for Goal evaluation in combat situations.

● Designers can customize usage of certain Goals in the logic of the Behavior
Graph without requiring additional code (e.g. Converse will only be available if
one or more motives are above or below certain levels), or if the Player has or
hasn’t done something (ever, or recently), or if the target has a certain
weapon equipped, or is in a certain health state, etc.

Example of a (simplified) Tomb Raider Behavior Graph

Comprehensive Debugging Support is Critical

• Designers tend to force behaviors (via scripting) when they don’t
understand why an NPC is doing something other than what they
expected him to do.

Comprehensive Debugging Support is Critical

• Designers tend to force behaviors (via scripting) when they don’t
understand why an NPC is doing something other than what they
expected him to do.

• Scripting is great for demos or extremely linear sections of the game,
but situations without systemic behavior are fundamentally weaker and
less interesting, and offer very little replay value.

Debugging Support

• Designers tend to force behaviors (via scripting) when they don’t
understand why an NPC is doing something other than what they
expected him to do.

• Scripting is great for demos or extremely linear sections of the game,
but situations without systemic behavior are fundamentally weaker and
less interesting, and offer very little replay value.

• Complex plans can be confusing to observe, although complex plans
should be the exception, not a common occurrence. This is a
fundamental aspect of GOAP: the Planner will always choose the least
expensive Plan for a Goal.

Common Question 1: What is that NPC
doing right now?

● Give details about the current Plan.
● When did each Action start?

● Why did completed Actions finish?

● Which Action is currently active?

● What is the status of each Action in the current Plan
(including those that haven’t started yet).

Common Question 2: Why isn’t the NPC
doing something else right now?

• Why weren’t other Goals and/or Actions selected when we
created the current Plan?

• Why haven’t we been able to create a better Plan while the
current Plan is active?

Common Question 3: What did he do
before his current Plan, and why?

• Provide details about why other Goals/Actions weren’t selected
when we created a previous Plan.

• Provide details about the final state of a previous Plan.

Tomb Raider GOAP Debugging – Last Planning Attempt

Tomb Raider GOAP Debugging – Details

