
We’ll get started in a few minutes. But before then, I’d like to ask everyone to silence
their cell phones please. These slides will be available online, there’s a download link
at the end of the presentation, so don’t bother taking pictures of every slide. And
there will be time for questions at the end.

Hi everyone, and thanks for coming today.

My name’s Chris Butcher, and I’m one of the engineering directors at Bungie.

1

So, basically this format of this presentation is: “what I wish I had known before we
got started”.

We’re going to start with a bit of history, then take a tour through the development of
the Tiger Engine that powers Destiny.

We’ll cover some lessons that we learned along the way, and then wrap up with a
discussion of the great struggle against software complexity, and why I believe none
of us are truly Software Architects any more.

2

Up front I’d like to set some expectations if that’s ok.

I’ve worked as an engineer at Bungie for fifteen years. I’ve spent a lot of time talking
to other people about game engines, and I’ve evaluated lots of game engines as well.
But, the Bungie engine is the only one I’ve actually used professionally. That makes
it hard for me to have an outside perspective sometimes, so keep that in mind.

** Also, I am only one of many engineers that worked on Destiny. So I don’t want to
take too much credit for any of this. Except anything that’s overly complicated. That’s
probably my fault.

** Lastly, this presentation is just some subjective thoughts about the craft of
software architecture. Any time I state something is a FACT, I just mean it’s my best
guess at a principle, not that I’ve discovered some immutable Law of Software
Engineering.

** So basically … you should take this whole presentation with a metric ton of salt.

3

Here’s about a million tons of salt.

4

Let’s start with a bit of history. In 1997 Bungie started working on Halo, and a new
engine to power it, code named “blam”.

We used this engine for all of the Halo games, and also Phoenix and Gypsum which
were two game explorations that were built using the blam engine but didn’t ever see
the light of day.

** The blam engine was a strong and mature platform on which we built 10 years of
features. But by 2008 it was starting to feel old. It wasn’t really due to an
accumulation of bad code or “technical debt”.

** Instead, what was happening was that a decade earlier on the first Halo game
we’d set the initial design principles of the engine, which worked really well back
them, but they didn’t apply so well to the modern world. A single main thread, a
single platform - these were key simplifying assumptions of the engine, but they were
starting to become restrictive – and they were very hard to change. We could see it
was going to be increasingly difficult to compete in the future.

5

The “core engine” is my term for the framework on which engine features are built.
It’s the stuff inside the line.

The core engine tends to be tightly coupled, and its components call directly into one
another.
- This makes it hard to abstract them away from each other using interfaces. Not

because you can’t put an interface on the code, but rather because there are
shared assumptions; about data formats, object lifetime, state management and
the performance characteristics that are hidden behind the interface.

- For example the resource manager and the environment streaming system have to
be designed together because of implicit rules about how resources load and
instantiate.

Outside the core, I call the next level the “feature layer” of an engine. It’s what’s
outside the line.
- In general, these feature components tend to be more loosely coupled.
- For example, camera systems, pathfinding, networking and rendering features are

almost completely independent.
- These feature components tend to talk to each other through interfaces for

abstraction.
- They tend to use data formats, object lifetimes, interface systems, message

protocols… code constructs that are defined by the core components.

6

There really isn’t a hard distinction about what’s in the core layer and what isn’t. This
is a qualitative distinction, it’s a spectrum.

6

So why is this interesting? Because these shared assumptions of your engine’s core
components turn into the “unwritten rules of your engine”. Particularly about things
like multithreading, and data lifecycle.

Every component has to follow these rules, otherwise it will be unstable or buggy or
hard to work with.

** Engine codebases are really large these days. So these rules are very hard to
change in a global fashion. You can extend the core components and add many new
features on top of them. But evolutionary change to these core engine properties is
very difficult.

7

So what are the rules of the blam engine?

8

9

Three main factors in the competitive landscape back in 2008.

** First: The big games that are our competitors are getting bigger. More spectacle!
More content! More specialized art teams!

** Second: Small games are on the rise, and competing for our business. Indie teams
or mobile games can iterate rapidly, and they’re eating away at the niche that small
console games exist in.

** Third: When we look at technology in the future it seems that the core
assumptions of our engine might start holding us back.

** These factors all lead us to conclude that we need to change something about our
engine technology in order to stay relevant.

10

Ok, so, suppose you’ve identified that you need to make a shift in engine strategy.
You have options to choose from.
- ** You can license an engine that is a product with continuous support, such as

Unreal or CryEngine. (Remember Unity wasn’t around back in 2008.) You have the
option here to add your own components, but in this scenario you aren’t going to
make changes to the core assumptions of the engine, because that would prevent
you from taking continuous integrations and receiving support from the engine
provider.

- ** Another option is to branch from another engine, either within your company
or perhaps an external company. This model isn’t favored as much these days, but
it was common during the 1990s for example with ID software engines.

- ** Or, you could start from scratch. This is rare in the modern age. The only
documented example I know of is Remedy developing the Alan Wake engine. [See
Markus Maki’s GDC11 presentation] This was a focused game – single player, single
platform, they opted out of a lot of requirements that are present in a game like
Destiny. Also, it was a 5-year effort for them. which for us wasn’t an option at the
time.

** So pretty quickly we settled on an evolutionary approach. There were big pieces of
Halo technology that we knew we needed to preserve for Destiny, specifically the
gameplay framework and networking. We had spent the last ten years solving the
problems of making a satisfying networked action game and we just didn’t know if we

11

could replicate it in a new engine.

11

We called this effort to evolve our technology the “Tiger Engine”, because we had this
cool piece of concept art for Destiny that had a Space Tiger in it, and what is more
awesome than that.

12

So after some months of evaluation and technology planning, we started the Tiger
engine in mid 2008.

** We’d identified some core principles that we wanted from our technology.
- It needed to be pervasively multithreaded and cross-platform.
- We wanted to divide the codebase into layers, so we could decouple the engine

functionality from the game logic.

** We were also pretty idealistic. We wanted to preserve all of the good features of
the blam engine, and none of the bad features! And we had all of these great ideas
for advanced technology that the engine had to be able to support!

** A lot of these principles were just theoretical goals when we started, and they
became a lot clearer over the course of development.

13

When we come to GDC we’re all looking for the real gritty truth, so I’m not going to
sugar-coat anything about the development Destiny. As you’d expect, everything took
longer than we expected, and there were some really difficult times along the way.

** But it’s not all negative. We did a lot of great work and wound up with some really
awesome technology.
- We have a new engine that will last us for 10 years
- It’s cross-platform and cross-generation so our designers make one game and then

it just ships on 4 platforms
- The final game is very stable, very performant, and it has a huge amount of future

potential

** It was a rocky journey developing all this technology, but despite all the difficulties
we encountered, it was still worth it.

14

So now I’m going to walk you through a simplified timeline of the development of
Destiny. My goal here is to provide just enough context for us to discuss the
architectural lessons that we learned.
I’m only going to talk about the technology development, and won’t touch at all on
art or design concept development.

April: Begin with a branch of the Halo Reach codebase
Explore ideas and set direction for tiger engine
August: Build script environment for gameplay experimentation

15

Build a new cross-platform foundation for tiger
core components
- Extract toolbox functions from Reach, write new

multithreading primitives.

Reflection system and new source content format
Break ground on content import pipeline

Multiple independent efforts in feature R&D
(graphics, pathfinding, animation, etc)

Multiple game prototypes in new gameplay/script
environment

16

- These are experimental gameplay “mods” on top of Halo

Reach content

EOY: A few new tiger components running inside
the legacy engine codebase

16

This is an example of what the feature R&D codebases looked like in mid 2009.
They were totally standalone from any of our engines or gameplay prototypes.
This allowed rapid iteration on potential features for Destiny without being
dependent on engine components that weren’t written yet.

17

In 2010 we begin standing up those core engine
components.

In the middle of the year there’s a large hiatus
when half of the Destiny engineering team returns
to help ship Halo: Reach

Meanwhile we stand up the new level import
pipeline
- New editor framework
- Requires all-new import pipelines for environment,

geometry, object system, and gameplay

EOY: Basic test levels can be authored end-to-end,

18

all the from source content into the new runtime
resource loader
- New engine components now connect mostly to
each other rather than legacy engine

18

Around this time the Halo: Reach team joins the
project

Many new engine components are in a partially-
implemented state
- Most features you want to work on need new core

functionality written to support them
- Engineering efforts get fragmented, as multiple teams move

into separate R&D codebases to get their work done

In May we bring the new renderer and
environment system out of their R&D codebase
and into the main line
- You can still run legacy game prototypes but they aren’t

19

compatible with these new systems
- Game prototypes continue for a few months before we

deprecate them

In August we have an onslaught of new content
being created and our systems are not scaling to
handle it.
We have to reboot the content import pipeline to
unblock art content production. I’ll talk about this
more later.

In October PS3 foundation development begins
with small team

EOY: First ‘proof of concept’ mission with client
networking but no servers
- All R&D and gameplay codebases reunited into single

mainline

19

This is an example of the tiger engine systems as they start to be put together around
the middle of 2011.
Artists and designers are able to try out their ideas in test levels in the new engine
but no production content can be created yet.

20

2012 is the year when all of the separate pieces
come together.

We start integrating client engine with server
architecture which prior to this had been
independent.

March: Art content production can begin.
New game simulation systems reach parity with
legacy engine, so we can port all our prototypes

June: Mission design tools are functional, true
game production can begin

21

Around this time, gameplay features
can use final APIs
- No longer need any rewrites between here and

ship

PS3 engine development had started in late 2011
with a small team. By late in 2012 we were ready
to put a ton of engineers on converting all our
features and writing SPU code. I’d estimate the PS3
engine took about 25 engineer-years in total over
the project, not including the content creation
costs.

EOY: Game client integrated with network and
service architecture

21

This is where we end up at the end of 2012. We can make representative
experiences. Take a look at the difference one year makes. Everything can come
together quicker than you think.

22

Engineering moves to support gameplay features
All content teams in full production
- Continuous optimization of content pipeline to meet new

content demands

April-November: Bring up engine on PS4 and XBO
- Next-gen platforms went from 0 to 80%
functionality in ~6 months (mostly because our
engine features and content were planned for
them from day 1)

E3 2013: first public showing
Large-scale testing and automation begin

23

EOY: Full game playable on all platforms

23

Engineering post-production focused on memory and performance
Content post-production: build missing features, polish the game
Bring all features to shipping bar on 4 platforms
August: Go Gold

24

So finally, we were done. We ended up with a really large project, by far our biggest.

The codebase clocks in at around 5.7MLOC, this size includes both client game engine
and tools, but not bungie.net or the Destiny service.

25

So how did we do against our new core engine principles? We had a ton of goals.

** Well, overall, I’d say we delivered about 60% of the capabilities that we were
aiming for. Some of them ended up better than others.

26

A lot of stuff wound up working really well – like our multithreading, our cross-
platform engine, our editor and tools.

However, our layered codebase structure ended up messier than we intended. It
compiles very slowly and ends up being a time sink on our engineering team. We
probably need to split up the codebase into DLLs by layer, which take a really long
time now given the size of the codebase. We now realize that we should have done
this up front, but we didn’t.

Our componentized object system is super powerful, but it’s kind of hard to use both
for engineers and content creators.

Our scripting environment works, but it isn’t very efficient either for prototyping or
implementing production gameplay. This is mostly a consequence of iteration times
and performance. I’ll talk about this later on.

But the big one is that our content iteration times are pretty bad. You can be looking
at minutes for small changes and tens of minutes for big changes. One of the pillars of
the engine was meant to be rapid content iteration, and we struggled with this for
the whole course of the project. It’s very hard to solve this problem during active
development, but we’ve made big strides toward fixing it after release. I’ll talk about
this more later on as well.

27

We don’t have time for a full postmortem, so that’s about as far as I’m going to go
into these specific issues for now.

27

So, to review what we’ve learned so far:
- ** we undertook a massive transformation of our engine
- ** we built a lot of features that are highly technically advanced – which is both

good and bad
- ** And it took about one-and-a-half years longer to build the engine than we

originally thought

** And like we discussed, we ended up with some great results and some not so
great results.

Now we’ll take a look at some lessons that emerged from this extended development
process.

28

The first lesson is that Nothing is New Any More.

29

Remember we were talking about engine choices and we identified that we wanted
to evolve our existing technology.

There are two main approaches.
** You can try to build your new components within the context of an existing
engine. But how would that even work? You’d be dealing with all of the complexity of
the old code PLUS all of the new code at once. That sounds like that would be really
slow and inefficient. We shouldn’t do that!!
** I know - instead we should construct a new framework that stands alone, and then
take the pieces we want from the old engine and bring them across. That sounds
amazing and beautiful. Our new engine will truly be a work of art!

30

Well… no. It’s a trap.

The problem we face here is well-known. Programmers love to write new code. It’s
our favourite thing in the world. It colours our judgment in every way … so much that
it is very difficult to make rational decisions about “rewrite vs extend”. Even when
we’re aware of this emotional bias, we are still subject to it. So yes, the “standalone”
approach where we port existing code into a newly written framework sounds
beautiful, it’s incredibly enticing, but it is a huge trap.

31

This is not a new concept. Here you can see two famous examples of writing on this
subject. Joel Spolsky and Randall Munroe. Hopefully everybody is familiar with their
work.

Now, you could form the opinion that new code is never the answer, and we are just
doomed to legacy systems forever.

But there is another way, and it’s what we did with the Tiger engine.

32

In this approach, you start by extracting functionality from your legacy engine that
can stand alone, “toolbox” type code.

You need to extract and REPLACE the old code, rerouting the engine to talk to the
new foundation. If you don’t do this then you are adding too much complexity. It’s ok
to replace a mature system with a 40% complete implementation at this point, as
long as you can get the job done and then come back later to handle edge cases.

** Now for the sake of simplicity I’m going to present this as a number of sequential
stages. But what actually happens is that all of these stages have a long tail before
they are complete, and they overlap with later stages.

33

The next stage is when you start building your new core engine components on top of
this new foundation layer.

Each of these components will follow the new engine rules internally, and
communicate with the legacy engine through shims. For example your new renderer
has to be able to draw legacy objects (even if it just shows them as colored spheres)
and your new object system has to collide with both legacy environments and your
new environment representation.

** This is really hard. This approach adds such a lot of complexity and time. We spent
over a year here in this stage and progress felt very, very slow – emotionally it felt
about 5x slower than it “should”. But eventually we started to get traction and the
new components started to get completed and then connect together.

34

The next stage is exciting because you can start to see real progress. You can run the
engine in a mode where these new systems are all active and they all have primary
control. The new renderer is displaying new environments with a new physics system.
You can start building very basic new content.

** At this point you need to retain the ability to switch at runtime between two
modes. One with the new systems and one with the legacy systems – so you can run
a legacy map that uses the old renderer and environments, and old object system.
That way you can still develop your prototypes that rely on the legacy gameplay
content.

** Again, this is really painful, because you have to keep this stuff running for longer
than you want.

35

In the next stage, now that you have the core engine up and running, your engineers
can start writing features exclusively to the new APIs.

For example our new effects system was written entirely on top of the new object
system and never knew anything about the old one. This is where your progress starts
to take off.

** At this point the legacy engine components are deprecated but still exist in the
codebase. You can start removing them if you have time, but there are likely lots of
legacy features that you want to continue using into the future so you have to keep
around some pieces. The priority here is to reduce complexity by ripping out old dead
code. But you have to deal with diminishing returns as you do so.

36

At some point you have deprecated enough of the legacy systems that you can make
a surgical strike and remove all the old code except the highest level game layer. This
is great because it reduces your build times, your maintenance costs, and you can
start to feel good about your codebase again.

** Well, we didn’t reach this stage yet. I’m not sure if we ever will – but the
important point to note here is that you’re looking at a flexible path.
At every stage along the way, you have options, and you can choose what’s
pragmatically right for your project in the next 3 or 6 months.
You’re continuously able to make cost/benefit choices about where you spend your
time.

37

This hybrid approach took 3.5 years, and some of the stages along the way were
really difficult. We changed almost all of the core rules of our engine while working
with over 5 MLOC in our codebase, and preserving critical gameplay functionality that
couldn’t be broken.

You pay a massive tax in order to have this flexibility. We don’t have a control group
that built this same engine from scratch. So we don’t really know exactly what we
gave up, but it sure felt like our engine development was maybe 2-3x times slower
than it “should have been”.

In the end, the systems in orange here are all new for Destiny. A lot of this stuff is very
advanced and could not have been built without changing the core components that
it relies on.

The green components came from Halo Reach but they were evolved so much that
they’re essentially completely changed.

And in blue are the components that were preserved from Halo Reach and then
extended for the game of Destiny. The important components in blue here are the
networking stack, and the game layer – each of these is a critical investment that we
just couldn’t afford to lose.

38

Overall, this was a really long process and we spent a lot of engineering time doing it.
But I don’t know any other way we could have ended up with the results that we did.

38

Now we’re going to shift gears, and look at a few specific lessons from the
development process.

39

We already talked about how the first stage of the Tiger engine was to extract low-
level code from the Halo codebase and refactor it.

This created a new cross-platform foundation layer, responsible for systems like files,
platform memory management, reusable data structures, and a job system for task
based multithreading.

** Wait a minute … Halo Reach is being developed in parallel and it doesn’t have a
job system. That would be really helpful to take better advantage of the X360’s
computing power.

So, we decided to integrate the whole Tiger engine, such as it was, back into Halo
Reach. This replaced the foundation layer underneath the engine, and enabled us to
use the job system for a few targeted purposes. We ended up converting the
animation system and part of our object physics simulation to use it.

** So this tech shipped 4 years before the rest of Destiny, in 2010!

40

Was it a good idea? As with anything there were costs and benefits.

** With hindsight, even though all of these layers changed massively in the following
four years, this turned out to be an important forcing function and one of the best
decisions we made.

41

Next we’ll look at another lesson, about how you can achieve change in a large team.

42

Suppose you’re in a large team and you’re trying to change the rules of the engine.

** This requires you to impose a new contract, potentially on a lot of existing code, or
new code being written. This only works if all of the code successfully gets converted.
A partially converted contract would be worse than useless because it introduces
confusion, uncertainty and complexity.

** Your engineering team wants to help. [If they don’t, you have larger problems that
are outside the scope of this presentation.] But they also want to get their tasks done
and they likely aren’t on the exact same page about the goals of the new engine.

** In this situation, our experience tells us that the new contract you’re trying to
achieve must be enforced by code. You can write about it, or talk about it, as much as
you want. But without code enforcement, all that talking is just not going to work.

43

Here are some examples of rules that we tried to follow which weren’t successful.

44

Here are some examples of rules that we did successfully change across the
codebase.

45

So what does good enforcement of an engine rule look like? The overall idea is to
make following the rules the “easy choice”.

** That means you need a code system to detect anyone violating the rules, and stop
them. Usually by an assert or a build break. This enforcement needs to work on an
engineer’s local development machine, while they are testing their code, not at some
later time on a build farm. Ideally you’ll also have enforcement that runs as part of
your automated checkin tests so you can prevent violations from being checked in to
the source tree.

** Any violation needs to report DETAILED information about how to fix it. And not
just information for experts! Your audience is a grumpy programmer who doesn’t
know anything about this system, and they have to be able to understand what’s
going on and be given step-by-step instructions for how to fix it.

** Sometimes it’s not possible to fix a violation. Maybe it’s a subtle problem. Maybe
there’s a playtest build and you just have to bypass the enforcement temporarily. For
a number of reasons any enforcement needs to have a local opt-out mechanism. Not
a global opt-out – that’s very important – otherwise the system gets checked in
turned off, and then the onus is on you to get back down to zero errors before you
can turn it on again. These local opt-outs needs to be easy to track, find and fix.

46

** The overall message here is Trust, but Verify. Your engineers want to do the right
thing, you just have to make it easy for them.

46

Now we’re going to talk about implementation order of engine systems.

47

Any new engine system depends on underlying technology. Suppose I’m working on a
new feature, and I depend on the widget system. But Bob is still working on the
widget system and it’s not ready yet. As an engineer I have a couple of options.

** I can stop my work, and help Bob out. Maybe the two of us can bring up the
widget system faster, and then I’ll be unblocked.
** Okay, but designers are depending on my work, and I don’t want to slow them
down.
Also, I don’t understand very much about widgets, so I wouldn’t be anywhere near as
effective as Bob is at writing widget code.

** This is a pretty common problem. One way to solve it is for me to work around this
dependency by writing my own shim API. This could be a new temporary API that I
can call into as a placeholder for Bob’s future widget system. Or, maybe there is a
widget prototype that exists and I can use it, but it’s kind of crappy, a low-
performance version that will eventually get removed and replaced with a later
production-ready version.

Either way, I can unblock myself and keep writing code and making decisions! Great!
** Well, this is actually incredibly dangerous.

48

The reason it’s dangerous is because you are building a system on top of something
that isn’t real.
- If you don’t have actual code backing your API, then you don’t know what patterns

in your high level code are structurally unshippable because they can never be
made performant.

- Another reason is that shims tend to have leaky abstractions. They can have edge
cases and failure modes that cause complexity to leak out into your higher level
system.

- But the main reason is that shims are just full of incorrect assumptions – about
data structures, or calling conventions, or data lifetime.

** All of these traits can propagate very quickly throughout a codebase. The technical
debt incurred by removing a shim late can be just astronomical.

** And it’s very easy for us as engineers to underestimate these costs. I’m sure you’ve
heard these phrases before:
- “I totally planned for that. We can just drop that system in whenever it’s ready.”
- “Doing the right thing now will take 6 weeks. We don’t have time for that in the

current milestone.”
- And my favourite: “Well, I guess it’s too late now. We’re going to have make the

minimum hacks required to ship it.”

49

We do have some examples where shims were effective. But the examples where it
failed are really bad. Let’s take a look at one of those.

49

You might remember from earlier that we built a scripting engine very early on in the
Tiger project. The goal was to build some gameplay script APIs on top of the Halo
Reach engine, then do a bunch of gameplay investigations, and port these prototypes
by replacing the engine APIs with the Tiger engine when it was ready.

** Well, in order to do that we have to make a lot of assumptions all the way up and
down the engine stack. We need shims for : X, Y, Z

** That’s a lot of assumptions. But, we thought it seemed plausible, particularly given
the potential benefit of preserving all our prototypes forward into the future. Besides,
if it wasn’t working we could always throw away the prototypes.

50

Well, what actually happened is that all the engine dependencies underneath the
script sandbox wound up being built out-of-order. So it wasn’t just that the Tiger
engine APIs arrived late. Rather we would replace a shim, and then realize we needed
to replace it again later because that shim needed to get rewritten due to ANOTHER
shim underneath it changing.

** We basically ended up writing 4 separate script compilers, in 2008, 2010, 2012
and 2014.

The details aren’t super important, and they are very hard to quantify anyway. The
main point of this slide is to convince you that I’m really not kidding about technical
debt that costs 10-15x what you would expect.

** At every point along the way we were making very calm, rational decisions based
on sunk costs and what we felt remained to be shippable. But the costs kept creeping
up on us, because all of the shims obscured the structure of the final system. We
always felt we were a lot closer to a shippable system than we really were.

** We ended up bogged down in this vicious cycle of shims leading to code churn,
leading to complex systems, which resulted in slow iteration times and poor
performance.

51

Ok, so the obvious question is, how can we handle this situation safely? Well, there
are some patterns that we’ve found to be safe.
- ** Like we talked about, we can move resources around. I can go help Bob finish

the widget system.
- ** Or, we could just delay my system. I can go and work on something else until

Bob is ready for me.

** Now we get into more complex options. I could build a prototype of my system.
We’re not talking about a game prototype but an engine prototype here. This only
seems to be useful if you put tight constraints on it. You have to limit the time you
spend. You have to plan to throw it away and reimplement any successful ideas, after
your engine dependencies are ready. Given those constraints, it does seem to work,
but it’s still less efficient than just waiting.

** And, of course, you can write a shim to unblock yourself. The trick here is to be
absolutely certain that you can ship this shim if necessary, as a fallback. And even
then, it’s still probably a bad idea and you really shouldn’t do it.

52

The next lesson we’re going to talk about is how to handle content scaling.

53

The volume of source content in your game is hard to predict ahead of time. But it’s
important to try and predict this volume because it has a big impact on the scalability
of your content processing pipeline. One thing we can definitely say for sure - it tends
to arrive very quickly.

** One reason for this is that your content team is likely to ramp up as you move into
production. If you’re part of a multiple project studio, you can go from a small
number of artists and designers to a large number quite fast.

** Another factor is the complexity of individual assets.
It’s possible for you to build a combinatorial system that has complexity proportional
to (models x shaders x permutations) and not realize it at first.
** Your content will go through several changes in fidelity as you go from massout to
production, and then from production to post-production.
So as you add, for example, more shaders and more permutations per model, you can
end up with breathtaking increases in asset complexity, again, very quickly.

** The last factor is that artists tend to travel in packs. At least at Bungie, our artists
are very good at bringing a team to bear on a single experience and making it look
amazing. For example an E3 demo or something like that. This can also increase asset
complexity very quickly.

54

** All of these factors multiply together to do something like … this…

54

Everyone raise your hands if this graph gave you a flashback to some disastrous
situation that you encountered in your career.

Just like climate change, this is a problem that our monkey brains are very bad at
solving.
By the time you’re in the danger zone, it’s already too late to fight these trends, you
are stuck trying to mitigate, and unable to keep pace with the incoming volume of
content.

Every engine MUST think about this up front and try to get out ahead of the curve.

55

The big problem here is that while content is super-linear, engine capacity tends to be
sub-linear.
Many algorithms used in graph operations scale as O(n log n), which isn’t great.
You can try to use distributed computing but you’ll quickly run into Amdahl’s Law.

** What you can do is aggressively design your pipeline to scale linearly.
- This means decoupling your content types and trying to break dependencies

between them.
- ** Sometimes it may be better to have a dumb content pipeline and push a bit

more work to the runtime engine or content creator. If you can keep several types
of content isolated and prevent them from talking to each other, it may not be
convenient for your content creator, but it could be the right thing to reduce
overall system complexity.

- ** Another strategy is that sometimes you can get your content creators to use a
partial workflow, for example instead of implementing an expensive incremental
lightmap computation, just give your artists the choice of whether to re-bake
lightmaps or not.

- ** All these strategies boil down to trying to avoid global optimization problems.

** Many of these principles are actually the same ones as server scalability. You need
to take your content processing pipeline and make sure it can scale OUT, instead of
needing to scale UP. If you can do that, you can stay closer to linear processing

56

capacity, and spend more of your time in the sweet spot underneath the content
curve.

56

Now, let’s finish up by talking about the epic struggle against software complexity. So
far I’ve just touched on this in passing, but really it’s the entire theme of this
presentation.

57

Software complexity manifests itself as a feeling that “it’s kind of hard to get things
done”. Not talking about Technical Debt here, but structural complexity.

** Adding engineers increases complexity. Butcher’s Law - “Lines of code = No. of
engineers x No. of months, which may have no relation to the complexity of the
problem they were asked to solve”
** Modern engines have many huge specialized systems. The Destiny shader system
is 100 times more complex than the original Halo shader system that shipped in
2001.
** Another source of complexity is systems that are not finished, which incur a tax on
everything around them due to edge cases, error handling and clumsy APIs.
** Lack of inspection means when something goes wrong you have to dive deep into
all this complexity, which acts to slow you down.

** All of this complexity leads to a positive feedback loop.
- It’s hard to get things done, so you just need to get your code written as quickly as

possible, you don’t have time for the right way. This leads to more complexity.
- Your iteration speed is slow, so you make smaller numbers of large checkins. You

have fewer chances to incrementally refine your code. This leads to more
complexity.

** And so the cycle continues. Unless you are continuously paying attention to this,

58

you can get stuck in a very inefficient state. So how can we deal with this?

58

We haven’t really defined software architecture yet, but I believe we can now.
Software architecture is the large-scale structure of a codebase.

** Strong architecture is structure that controls complexity within your engine. It’s
the set of interfaces that allow you to insulate systems from each other’s
implementation details. It’s the watertight abstractions (as opposed to leaky
abstractions) that hide internal complexity and present a simple outward wrapper. It’s
the set of utility technologies that lets you quickly understand what’s going on within
your engine. I could go on and on, but we all know what strong architecture looks
like.

** So what’s the benefit of architecture? It doesn’t let you build features faster. It
doesn’t increase the quality of your game. But it does allow you to tackle big
problems that would otherwise be out of reach. If you tackle big problems without
strong architecture, you wind up drowning in complexity and unable to complete
your project.

59

There’s just one problem with this. As we’ve already established, changing the rules
of a codebase is hard. You’re working with gigantic codebases, under shifting
requirements, and constant pressures of expediency. But you don’t get to press the
reset button. These investments are too large to throw away.

** I believe this means it is literally impossible to design and then build large-scale
strong architecture from the ground up. Not any more. Those days are behind us now.

** Now, we are no longer software architects.

60

Instead, we should think of ourselves as software gardeners.

** We work in environments that are messy, full of sprawling life and complexity.
We spend our days grappling with the limits of our ability to effect change.
** We don’t really get to build new things any more. But… there is a joy to be found
in the work still.

** Make pragmatic decisions.
Work with what you have.
Stay in the moment but keep one eye on the future.

** And don’t be afraid to make big investments. Be brave.

61

So when we look back on Destiny, we built a lot of great technology and shipped a
great game.

** We knew from the start it would be tough, and it was, but it was absolutely worth
it. You can’t build something great by staying safe.

** I hope our experiences can help all of you in taking on your own big challenges,
and completing them successfully.

Thanks very much for listening.

62

63

So, that’s the end of the talk. If you have any questions or you just want to chat about
architecture please drop me a line. Also, if you find these kinds of problems
fascinating, and you love working with great people, please consider coming to work
with us.

Hopefully we have time for a few questions in person (lol) … please come up to a
microphone.

64

