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Who Are We?

• Gillian Smith 

• Assistant Professor, Northeastern University 

• PCG-based game design, mixed-initiative 
design tools, history of PCG, constraints, 
grammars 

• Super Mario World, western roleplaying 
games, puzzle games



Who Are We?

• Julian Togelius 

• Associate Professor, 
New York University 

• Search-based PCG, cellular automata, PCG for game 
adaptation, game generation 

• StarCraft, Super Mario Bros, Cut the Rope, racing 
games



What Are We Talking About?
• Technical approaches to gameplay-oriented PCG 

• What is available? 
• What are strengths and weaknesses? 
• Examples 

• Practical PCG advice 
• Choosing an approach 
• Why is PCG in the game? 

• Using PCG to help designers 
• Debugging and visualization strategies



There is no magic bullet.



PCG Methods and Approaches
their power and peril
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Constructive Methods

• Piece together random building blocks 

• Direct randomness via: 

• Knowledge representation 

• Altering distribution 

• Indirection, lookup tables 

• “Let’s just hack this thing together.”

Description

Spelunky



Constructive Methods

• Light-weight algorithmically 

• Customized to design 

• This is good and bad… 

• Fighting against human pattern 
recognition skills 

• Authoring burden on artists, designers to 
make highly modular content

Power and Peril

Diablo 3



Constructive Methods

• 4 pages of lookup tables 

• Build entire dungeon at runtime 

• Highly customized 

• Hard to debug 

• PCG as part of play!

Extreme Example

AD&D Dungeon Generation



the procedural generation of city models [16]. This extension 
serves to create looped networks of roads, where original L-
Systems only generate tree-structures. The extension allows a 
street that is generated close to a previously generated street to 
intersect the latter, and thus create a loop back to the previously 
generated structure. 

4. GRAPH GRAMMAR TO GENERATE 
MISSIONS 
Graph grammars are discussed in relation with level generation by 
David Adams in his 2002 Bachelors thesis Automatic Generation 
of Dungeons for Computer Games [17]. Graph grammars are a 
specialized form of generative grammars that does not produce 
strings but graphs consisting of edges and nodes. In a graph 
grammar one or several nodes and interconnecting edges can be 
replaced by a new structure of nodes and edges (see figures 2 & 3; 
[18]). After a group of nodes have been selected for replacement 
as described by a particular rule, the selected nodes are numbered 
according to the left-hand side of the rule (step 2 in figure 3). 
Next, all edges between the selected nodes are removed (step 3). 
The numbered nodes are then replaced by their equivalents (nodes 
with the same number) on the right-hand side of the rule (step 4). 
Then any nodes on the right-hand side that do not have an 
equivalent on the left-hand side are added to the graph (step 5). 
Finally, the edges connecting the new nodes are put into the graph 
as specified by the right-hand side of the rule (step 6) and the 

numbers are removed (step 7). Note that graph grammars can have 
operations that allow existing nodes to be removed, these 
operations are not used in this paper. 
 

 
Figure 2. An example of a graph grammar rule 

 

 
Figure 3. The replacement operations according the rules from 

figure 2. 

 
Figure 4. Rules to generate a mission 

Grammars

• Specify an ontology, an axiom and a set of 
production rules 

• The rules determine how symbols are 
expanded 

• Well-known example: L-systems 

• Much broader applicability, e.g. quests, 
dungeons, caves…

Description

Joris Dormans’ Missions and Spaces



Grammars

• Power: easy to author chunks of content,  
surprisingly complex structures generated 

• Perils: over- and under-generating, repetitiveness 

• Generate-and-test

Power and Peril

Benjamin Mark et al. 3D Caves for Games on the GPU



Constraint-Based Systems

• Define domain in terms of variables and 
numerical and/or logical constraints 

• Off-the-shelf solver 

• “I need to meet hard design constraints 
and I love logic programming.”

Description

Refraction



Constraint-Based Systems

• Can make promises about design issues 
• Solvability / validity 
• Player experience 

• Flexible, general-purpose language 
• Must define domain very tightly, including 

common sense 
• Scalability depends on domain 

representation 
• Debugging is difficult

Power and Peril

Tanagra



Constraint-Based Systems

• Game generation with modular, logically 
expressed rulesets 

• Constraints on how rulesets can be 
combined 

• Generated result constitutes explanation of 
rules for player

Extreme Example

Variations Forever



Optimization

• Also known as search-based PCG 

• Use an evolutionary algorithm to evolve the 
content 

• Fitness function: “goodness” of content 

• Representation: creates a search space 
where good content can be found

Description

City Conquest



Optimization

• Power: extremely general, requires little 
domain knowledge, 
finds unexpected solutions 

• Peril: takes time, 
hard to find fitness function, finds 
unexpected solutions 

• Different levels of ambitions possible - from 
tuning the game to creating new rules

Power and Peril



Optimization

• Angelina: generates complete games 

• Evolves levels, selects art 

• Also in previous version: evolves 
mechanics

Extreme Example

ANGELINA



Mix-and-Match

• Optimization + grammars 

• Constraints + grammars

• Optimization + constraints 

• Multi-layer constructive



Summary

METHOD POWER PERIL

CONSTRUCTIVE simple to author 

customization

repetitiveness in content 

ad hoc

CONSTRAINT-BASED design guarantees

declarative

translating to constraints

debugging

OPTIMIZATION-BASED generality 

emergence

fitness function

speed

GRAMMARS emergence

easy to author

prone to over- and

under-generation



Practical Advice
okay but now what?

fli
ck

r: 
ju

st
in

ba
ed

er



What Do You Care About?

Design Control

Indirect

Compositional

Experiential

Building Blocks

Authored Chunks

Templates

Components

Subcomponents

Player Interaction

None

Parameterized

Indirect

Direct

Game Stage

Online

Offline



Data vs. Process

• Where do you place authorial control?

Building Blocks

Authored Chunks

Templates

Components

Subcomponents

Data 
Oriented



Data vs. Process

• Where do you place authorial control?

Building Blocks

Authored Chunks

Templates

Components

Subcomponents

Process 
Oriented



Algorithm Speed

• Online 

• Speed is paramount 

• Human-in-the-loop? 

• Offline 

• Flexible in algorithm choice 

• Automated curation

Game Stage

Online

Offline



What about the players?

• Type of control dictates algorithm 
choice 

• Weighting of grammar rules 

• Fitness Function 

• Changing constraints

Design Control

Indirect

Compositional

Experiential

Player Interaction

None

Parameterized

Indirect

Direct



What about the players?

• What granularity of control? 

• “Fun” and other fitness functions 

• Specific content or experiential (eg. 
pacing) requirements

Design Control

Indirect

Compositional

Experiential

Player Interaction

None

Parameterized

Indirect

Direct



PCG Dynamics

• How coupled is it to other mechanics? 

• Memorization vs. reaction 

• Player builds strategies to influence generator 

• Player seeks new content in large world 

• Player practices mechanics in new settings 

• Communities of players interacting



Mixed-Initiative Tools
pcg to help designers
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• Human-machine realtime (-ish) 
design collaboration 

• Human continually edits 
constraints on level, machine 
brainstorms 

• Experiential control: manipulate 
pacing independent of geometry

Tanagra
Constraints and Reactive Planning for Platformer Levels





Sentient Sketchbook

• Maps represented as sketches 

• Suggestions continuously generated in 
reaction to user actions 

• Human aesthetic preferences recorded 
from editing operations

Optimization for strategy map levels





Ropossum

• Tree search for finding solvable levels 

• Grammatical evolution for placing level items 

• Any part of the level can be locked for 
human edits

Optimization and solving for Cut the Rope





Visualizing and Debugging
making sense of your generator
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Generative Space

• PCG moves us from designing content to 
designing spaces of content 

• Minor algorithm choices can lead to large 
changes in space of output
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Sampling from the Space

• Tempting to look at a few examples of 
content and judge entire space 

• Sampling problems: how do you know you 
have a representative sample?
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Expressive Range

• Define several metrics for “evaluating” produced content 

• Plot sample output of generators against axes defined by metrics 

• Produce 2D histograms visualizing generative space 

Figure 7: Heatmaps visualizing the expressive range of each generator according to the Density (x-axis)
and Leniency (y-axis) metrics. The order of generators (left to right, top to bottom) is: GE, hopper,
launchpad, launchpad-rhythm, notch, parameterized notch, parameterized notch-randomized, ORE, original
levels, pattern-based-count, pattern-based-occurrence, pattern-based-weighted-count.

generator control type
GE indirect, via changing evolution

parameters
hopper parameterized, for implicitly de-

fined di�culty levels
launchpad parameterized, for component

appearance and rhythm
notch none
notch (param.) parameterized, for component

appearance
ORE knowledge representation, can

change input chunks
pattern-based indirect, via changing evolution

parameters; and knowledge rep-
resentation, can change input
patterns

Table 2: Controllability of the main generators
tested in this paper, using vocabulary from [22].

(a) (b)

Figure 8: Heatmaps visualizing the compression dis-
tance matrix, showing the impact of varying pa-
rameters. (a) Parameterized Notch generator. (b)
Launchpad with varied rhythm parameters.

cluded in this study. These include metrics that measure
macro-scale progression and repetition in the level. They
also include simulation-based metrics, which would use an
artifical agent to play the level and analyse its playing style.
Further, we could use metrics that try to judge the shape of
the level, for example through computer vision methods. Or
we could associate individual level patterns and situations
with player experience through machine learning, and build
level metrics on top of the output of such models. Lack-
ing any previous comparative PCG evaluation, we focused
primarily on existing research metrics.
A question that becomes more pressing the more metrics

we accumulate is how to choose between them, or perhaps
combine them. One way would be to use principal com-
ponent analysis, or some similar dimensionality reduction
technique. This could give us a smaller number of joint met-
rics that still capture the essential variance between levels.
Or simpler, we could cross-correlate the various metrics and
only keep the least correlated ones. However, we also need to
weigh the importance of having human-interpretable metrics
and results; it is important for designers and AI researchers
to understand how generators di↵er from each other in a
design-relevant context.
This assumes all metrics are somehow equally important.

Clearly, that is not true for most specific intendend usages,
e.g. to design an intriguing, fun or challenging level. We
would therefore need to complement our computational in-
vestigation with user studies, where we associate metrics
with their e↵ects on player experience. The level distance
metrics could also be validated by investigating how di↵er-
ent to each other various levels are perceived to be.
Finally, the comparison of generators performed here is

only possible because each generator shares a common con-
text and framework. Evaluating within a common frame-
work is helpful; however, it also obscures the importance of
creating a content generator to meet a specific game’s con-
text. Clearly, some metrics can be easily applied to multi-
ple level generation contexts (such as compression distance)
while others may need to be fine-tuned for a new context.

6. CONCLUSIONS
We have defined a framework for evaluating and com-

paring the expressivity of level generators, and quantita-



Some platform game metrics

• Leniency 

• Linearity 

• Density 

• Pattern density 

• Pattern variation

Figure 7: Trigram-based (n = 3) levels with SMB 1–1, 1–2 and
2–1 as corpus.

(a) Level: 704 Linearity +96 (MAX).

(b) Level 118: Linearity �16 (MIN).

(c) Level 50: Leniency +8 (MIN).

(d) Level 20: Leniency +44 (MAX).

Figure 8: (n = 3) levels with pruned corpus 2600 slices (15
levels from the original SMB with the first screen of each level
removed).

Figure 9: Leniency and Linearity for 1000 above ground
pruned levels. Higher Leniency means more difficult. Higher
Linearity means flatter levels.

Table 1: Linearity and Leniency.
n-gram callbacks per 1000 levels 252
Linearity Average 51.23
Linearity MIN -16
Linearity MAX 96
Linearity DEV. 16.79
Leniency Average 23.704
Leniency MIN 8
Leniency MAX 44
Leniency STD. 6.01

than a level with low linearity value. High Leniency means more
enemies and gaps where the player may lose a life. An expressive
range analysis of 1000 generated levels shows that the output of
the n-gram level generator exhibits considerable diversity, at least
in these two dimensions.

5. LARGE SCALE COMPARISON
To answer the question of whether this method really allows us

to copy style, we did a large scale statistical study of whether gen-
erated levels retain the style of those levels that go into their corpus.
We chose to use the measures of linearity and leniency, discussed
above, as measures of style. If the levels that are generated from
a particular corpus have similar measures values for linearity and
leniency as those in the corpus, we reason that the levels are similar
in style in at least this respect.

We generated 1000 levels based on each original level (only one
level in the corpus). We measured the linearity and leniency for
each original level and compared that value to the calculated aver-
age value for each of the groups of the generated levels. In general,
levels generated using n-grams have linearity and leniency values
very close to those of the original levels (see Table 2). Exceptions
do exist (World 3–Level 1 and 5–1 differ on leniency, and level 1–3
differs on linearity). For level 1–3 the difference may be related to
the short original level (length 140), but the other two levels have
just below average length. Level 5–1 is on the other hand rather





Further Resources
want to learn more?
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Resources
• proceduralcontent google group: 

       https://groups.google.com/forum/#!forum/proceduralcontent 

• #procjam (coming again in 2015!): http://procjam.com; twitter: @procjam;  
AI-jam (March 21-29): http://ai-jam.com 

• procedural content generation wiki: http://pcg.wikidot.com/ 

• PCG textbook (in-progress): http://pcgbook.com/ 

• academic venues 
     foundations of digital games (mostly open access) 
     artificial intelligence in interactive digital entertainment (open access)  
     computational intelligence in games (mostly open access)  
     transactions on AI and CI in games



Thank you!
Gillian Smith       gi.smith@neu.edu     http://www.sokath.com 

Julian Togelius  julian@togelius.com    http://julian.togelius.com


