
1

2

Assassin’s creed is a next-gen game, in Paris during the French

Revolution, with huge crowds…

3

And coop

4

In the previous Assassin’s Creed, the multiplayer game was a different

executable. It was running in a different map, not in an open world. Also

it was using a server.

5

Let’s see it !

6

Open world game

Coop peer to peer, 1 to 4 players

Huge existing code base

Simulation bubble around each player: 80 meters

Loading grid: blocks of 32 meters (around 40 blocks loaded)

7

8

Lost of technical worlds….

9

Peer = machine of the gamer

NPC is an entity

Component architecture

Entity with network component = replicated entity

NetObject: used for network discovery, and communication

1st entity spawned = master

10

Replica created when master is discovered

Mementos: auto replication of variable (master to replica)

11

Migration: switch from replica to master

12

NetTokens are time based: the first one that has requested the token is

the winner.

The time used is the network time. The time is in each message, so

each peer get the same comparison result.

In case of equality the peer with the lower peer ID wins.

13

14

A RPC is converted into a reliable message.

A RPC can be persisted for Join In Progress: these functions returns a

cookie than you can persist. As long as it is persisted, this function will

be executed on all peers that create a new replica of this object.

You can execute or reexecute a RPC through the cookie.

If you receive a RPC PlayAnimation(Animation * anim), but your entity

is not ready to play this animation, you can keep the cookie, and

execute the RPC when your entity is ready. You can even call

PlayAnimation each frame until it is successful.

If RPC1 is ordered, RPC2 is not, and RPC1 transport packet is lost,

then RPC2 can be executed.

15

Example 1: the master executes a RPC, it is then broadcast and

executed on all replicas.

Example 2: a replica executes a RPC, it is then unicast to the master

that executes it, and the master broadcast it to all the replicas except

the initial sender.

16

17

If player 2 has created a transient replicated entity, and it sends to

player 1 a NetHandle to this entity, then player 1 can get the position

and the sight of this entity. It can also find out if this entity still exists for

player 2.

18

If the entity and the red player move toward the blue player, the entity is

discovered and the NetHandle is resolved.

19

20

Asynchronous process: pool of spawning requests.

The spawning manager execute each frame the most urgent spawning

requests.

Different strategies:

• Spawning: generate a new entity.

• Acquisition: reuse an entity released by another

spawning client.

Around 500 spawned NPCs, but less than 60 are individually replicated.

The entities not individually replicated are managed by the massive

crowd system that handles replication at a higher level.

21

If the entity is a replica, mementos are applied before adding the entity

to the world, so it is in sync.

22

In Echo, master is spawned, replicas are automatically created

This is for systems with unpredictable spawning request, ex: crowd

members, players

Only the NPC type and a seed are broadcast.

23

24

In engine, a gameplay system decides to spawn an entity.

This gameplay coordinator can be active on multiple peers, and we

don’t want to have as many entities than peers.

A spawning request is added on all peers. It asks for a token, and the

spawning request that manage to acquire the token will spawn the

master. The token is also used to set the netkey of the entity.

The other peers will spawn a replica.

The generation seed is generated with the ID of the spawning client, so

nothing is broadcast as the NPC type is known by all peers

25

26

27

28

29

This is a tool to debug player replication: a player replica is created

locally, and receives all messages with a fixed latency.

30

Controller = hardware, HSM (Human State Machine) = code, Animation

= data

We could replicate the controller input, but the game is not

deterministic.

We could replicate the animation, but that would be very expensive.

We are replicated the animation logic.

Replication state machine allows to cope with network realities such as

loss packets, latency variations.

Not too intrusive on HSM code.

Virtually no environment checks on replicas, all done by the master =

low CPU cost

31

What is a final decision ? Land on beam, enter window.

32

3 state machines:

HSM -> enter in all states + send final decisions

Animation graph: extra transitions for the replica

33

34

35

Cannot reuse the player behavior replication:

• Too expensive in bandwidth.

• Doesn’t handle migration: the local player is always a master

Ideally NPCs should be replicated at the character logic.

Since there is a huge existing code base, we have actually added a new

layer of replication between the character logic and the animation logic

Intentions: layer of replication between the character logic, and the

animation logic

36

The intention framework is a state machine. There are 4 concurrent

states: Animations, navigation, weapons and lookat.

All these states can be active at the same time, as we can have a NPC

walking, while playing an upper body animation, with his sword

unsheathed, looking at his target.

Under all these concurrent states, we have some exclusive states.

First, there is always an Idle state, when the concurrent state is not

active.

Then we have some states for all the possible actions

Transitions to an active state are triggered by RPCs, and are a

persisted for join in progress.

Once an action is completed, there is a transition to the Idle state; the

RPC is unpersisted.

37

38

39

A gameplay coordinator manages the behavior of a list of NPCs, and

handle their interactions with the player.

Once the NPC is spawned, the gameplay coordinator pushes a

character logic on its AI component.

Examples of gameplay coordinators: tail, defend, patrol guards…

Around 40 different coordinators in ACU.

Examples of character logic: navigate, fight, search, play animation…

40

41

- Actions are not applied on replicas

- Sensors and UI is for local player

- Net data is shared between all instances

- Actions are applied on masters

A replica coordinator sends data to the master through RPCs. The
master does the synthesis of these information, and broadcast it to the
replicas through a memento.

Since masters and replicas share the same data, they take the same
decisions.

In case of migration, or disconnection, everything is already shared.

Example for shared data: for an interaction coordinator, each peer will
notify the master whereas the local player is ready to trigger the
interaction.

All players will be aware of the state of the other players, and will allow
the interaction accordingly.

42

43

44

45

Crowd stations: NPCs that are not walkers e.g. merchant stands,

artisans, groups of people talking, etc. They are not essential for

gameplay.

46

47

Around 900 stations loaded, and up to 600 spawned NPCs

non-replicated entities: bulk crowd members.

48

After a reaction, a station is deactivated, NPCs don’t belong to this

station anymore.

49

State: active, started, aborted, completed, number NPC spawned,

released, lost

Master = token winner (token requested by the cell)

50

How do we replicate: Split Mastering

Each manager creates it's own NetObject

NetObjects discovered are linked to the crowd life manager

Stations:

Check who will manage each station using NetTokens

Winner of token is the Master of that station.

NPCs:

Check if the entity is a master or a replica.

For all “Local Masters”, write the state changes in the master
NetObject

For all “Remote Replicas”, listen for the memento callback of
remote peers and change state to follow master.

This split mastering pattern is also used for the proxies, and for
the players data (inventory, customization)

51

52

53

54

Proxies are a saving for other systems

55

Hard to evaluate, similar to playing this game.

56

Need a lot of logs and a good logging tool to debug

57

58

59

