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“A fracture is the separation of an object 
or material into two or more pieces under 

the action of stress”



Brittle fracture vs ductile fracture



Finite Element Method









Boolean CSG operations 
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Robust convex plane splitting





For each vertex v 
 Determine if v is above or below the splitting plane 
Next





For each edge e that has one vertex above and one below 
 Find intersection point with plane 
Next





?



For each edge e that has one vertex above and one below 
Find intersection point p with plane 
Project p onto edge 
Clamp p to lie in between the two vertices 

Next





For each edge e that has one vertex above and one below 
Find intersection point with plane 
Project p onto edge 
Clamp p to lie in between the two vertices 
If p is close to vertex, move it away from vertex 

Next





no math beyond this point





pick any vertex vStart on side A 
do 
    v = nextVertex 
    if v is split vertex then 
        do 
            v = nextVertex 
        until v is split vertex 
    add new edge 
until v == vStart 
  





pick any split edge eStart in polyhedron A 
do 
    find connected split edge e 
    reverse edge e and add to A 
until e == eStart



struct Vertex  
{  
    vec3 mPoint;  
    ...  
}; 
 
struct Face  
{  
    short int mEdge;  
    ...  
}; 
 
struct Edge  
{  
    short int mFace;  
    short int mVertex;  
    short int mNextEdge  
    short int mOppositeEdge;  
    ...  
};







distance test
configuration space overlap test









body->animate(...)







body->animate(...)

leftBody = leftShape->getBody() 
rightBody = rightShape->getBody() 
leftBody->animate(...) 
if rightBody != leftBody then 
 rightBody->animate(...) 
end



Shape-centric physics engine



physicsStep() 

for each contact c  
   if (c.impulse > limit)  
      fracture(body)  
   end  
end





oldVel = body->vel 
physicsStep() 
if (impulse > limit)  
    newBodies = fracture(body)  
    for each body b in newBodies  
        b->vel = oldVel*t + b->vel*(1-t)  
    end  
end







collisionDetection()  

for each contact c  
   if c involves fracture then  
      c.maxImpulse = limit  
   end  
end  

solver()  
integration()  

for each contact c  
   if (c.impulse == limit)  
      fracture(body)  
   end  
end







1 integrate new velocities 
2 collision detection 
3 limit impulses 
4 run solver 
5 if there are saturated impulses 
    fracture objects 
    collision detection on new objects 
    goto 3 
6 integrate new positions



1 integrate new velocities 
2 collision detection 
3 limit impulses 
4 run solver 
5 if there are saturated impulses 
    fracture objects 
    collision detection on new objects 
    if ++iterationCount < 3 then goto 3 
6 integrate new positions





Broad phase
Dynamic Bounding Volume Tree 

World offset shifting 



Near phase
GJK incremental manifold 

Speculative contacts



Solver
Sequential Impulse 
No solver islands 

Custom deactivation
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