
PROCEDURAL DESTRUCTION

Dennis Gustafsson  
Mediocre

“A fracture is the separation of an object
or material into two or more pieces under

the action of stress”

Brittle fracture vs ductile fracture

Finite Element Method

Boolean CSG operations

Captain Sprite / Wikipedia

Nathan nfm/ Wikipedia

Robust convex plane splitting

For each vertex v
 Determine if v is above or below the splitting plane
Next

For each edge e that has one vertex above and one below
 Find intersection point with plane
Next

?

For each edge e that has one vertex above and one below
Find intersection point p with plane
Project p onto edge
Clamp p to lie in between the two vertices

Next

For each edge e that has one vertex above and one below
Find intersection point with plane
Project p onto edge
Clamp p to lie in between the two vertices
If p is close to vertex, move it away from vertex

Next

no math beyond this point

pick any vertex vStart on side A
do
 v = nextVertex
 if v is split vertex then
 do
 v = nextVertex
 until v is split vertex
 add new edge
until v == vStart

pick any split edge eStart in polyhedron A
do
 find connected split edge e
 reverse edge e and add to A
until e == eStart

struct Vertex  
{  
 vec3 mPoint;  
 ...  
};
 
struct Face  
{  
 short int mEdge;  
 ...  
};
 
struct Edge  
{  
 short int mFace;  
 short int mVertex;  
 short int mNextEdge  
 short int mOppositeEdge;  
 ...  
};

distance test
configuration space overlap test

body->animate(...)

body->animate(...)

leftBody = leftShape->getBody()
rightBody = rightShape->getBody()
leftBody->animate(...)
if rightBody != leftBody then
 rightBody->animate(...)
end

Shape-centric physics engine

physicsStep()

for each contact c  
 if (c.impulse > limit)  
 fracture(body)  
 end  
end

oldVel = body->vel
physicsStep()
if (impulse > limit)  
 newBodies = fracture(body)  
 for each body b in newBodies  
 b->vel = oldVel*t + b->vel*(1-t)  
 end  
end

collisionDetection()  

for each contact c  
 if c involves fracture then  
 c.maxImpulse = limit  
 end  
end  

solver()  
integration()  

for each contact c  
 if (c.impulse == limit)  
 fracture(body)  
 end  
end

1 integrate new velocities
2 collision detection
3 limit impulses
4 run solver
5 if there are saturated impulses
 fracture objects
 collision detection on new objects
 goto 3
6 integrate new positions

1 integrate new velocities
2 collision detection
3 limit impulses
4 run solver
5 if there are saturated impulses
 fracture objects
 collision detection on new objects
 if ++iterationCount < 3 then goto 3
6 integrate new positions

Broad phase
Dynamic Bounding Volume Tree

World offset shifting

Near phase
GJK incremental manifold

Speculative contacts

Solver
Sequential Impulse
No solver islands

Custom deactivation

dennis@mediocre.se
tuxedolabs.blogspot.com

