
Let me preface my talk by saying that I’m the one lucky enough to be standing here 
today to talk about Far Cry 4, but really I’m presenting the work done by the whole 
graphics team at Ubisoft Montreal. 

1 



We started with the technology from Far Cry 3. 

2 



But we also knew where the problems were and what we wanted to improve from 
Far Cry 4. I’m going to go over some of these improvements. 
 

3 



With time of day changes, there is no hiding place… 
 
Our mandate as a graphics team was to lead on current-gen, keeping the last-gen 
engine the same as what shipped Far Cry 3. That gave us a lot of constraints as we 
had to keep the last-gen working, which affected a lot of our decisions throughout 
the project. By the end of the project, as was probably inevitable, we had to go back 
to the PS3 and Xbox 360 and polish those up, but it meant that we had a better 
product than FC3 on all platforms. 
 
But thus today, I’m going to be talking almost exclusively about our work on Xbox One 
and PS4, but I’ll drop a few titbits of information about the old consoles when I get 
the chance. 

4 



We focused on five main areas of improvement, but I’m only going to talk about the 
first four today. Hopefully you all attended Ka Chen’s presentation earlier today, which 
talked about the virtual texturing we developed to improve our terrain rendering. 

5 



6 



I spoke about physically based shading in Far Cry 3 at SIGGRAPH 2012. 

7 



Like everyone else, we’re using the Disney BRDF. Disney call the “reflectance” 
parameter “specular”, but I think the former works a lot better, plus they have 
“roughness” instead of “glossiness”, but we had to stick with the latter for legacy 
reasons. We’ll change it in the future. 
 
We tried the Disney diffuse but it just didn’t seem to make enough of a difference. 

8 



We’re going to talk about metallic and anisotropy today. 

9 



If we used a full specular colour, we’d have to find three G-Buffer channels which 
wasn’t an option on PS3 and 360. Instead, we could just replace the reflectivity 
channel. 

10 



11 



If we used a full specular colour, we’d have to find three G-Buffer channels which 
wasn’t an option on PS3 and 360. Instead, we could just replace the reflectivity 
channel. 

12 



13 



I guess I should note hear that technically the alpha parameters are roughness, not 
glossiness, and we really should be calling glossiness “smoothness” as it’s a more 
accurate representation of what it is. Still, we kept with the legacy naming from Far 
Cry 3. 

14 



To store tangent space compactly, we can actually steal ideas from animation 
systems. In particular, Crytek did a presentation on packing tangent space as 
quaternions for their animation system, as did Niklas Frykholm on the BitSquid blog. 
 
The three smallest components are in the range [-1/√2, +1/√2] because if one was 
any bigger, it would have to be the biggest component. We can then rescale that 
range to [0, 1] for better precision. 

15 



For all the shader code for quaternion packing/unpacking, please see the appendix. 

16 



17 



Orthonormal tangent space isn’t so bad, particularly because you can decouple the 
tangent space used for shading and the tangent space used for normals. (That’s a 
problem if you’re going to do LEAN mapping, but we weren’t.) 
 
For blending decals, having virtual textures helps us a lot here, because all our terrain 
decals are baked into the virtual texture. For all other objects not using virtual 
texturing, such as decals on buildings, having only one layer was a limitation we 
presented to artists and they worked around. 

18 



I’m grateful to Matt Pettineo for bringing Don Revie’s article to my attention. 

19 



I’ll be honest, it’s far, far from perfect… but it’s a hell of a lot faster than importance 
sampling and a hell of a lot better than doing nothing. 

20 



We solved an interesting problem with adding anisotropy… Our weapons team 
always complained that they wanted a fake specular term, as they didn’t always see a 
highlight. With anisotropic specular, it completely stopped those complaints as they 
always felt they could see something cool going on from all angles. It’s worth pointing 
out that this “fake specular” they wanted in fact therefore was a form of anisotropy – 
that’s what they felt they were missing from the real world. 

21 



22 



I’m mentioning work done by three people on our team. Jeremy Moore worked on 
the sky occlusion, and Gabriel Lassonde the environment maps, and myself on the 
indirect lighting. 
 
Increasing the resolution of the sky occlusion was probably our priority over 
increasing the resolution of the indirect lighting, because it was less intrusive 
(important because of our cross-generation production) and it’s also easier – we 
knew it was achievable. 

23 



24 



In other words, we generate a height map of our scene and use that to generate 
visibility information. 

25 



26 



27 



28 



We fade the sky occlusion to fully visible based upon the height above the terrain – at 
the terrain height, we use the full sky occlusion value, but at the height stored in our 
blurred height map we count the pixel as fully visible. 

29 



30 



31 



You might note the harsh falloff here – this was art directed, as we gave some 
controls to tweak the final result. 

32 



If you look at where the building meets the ground, you’ll see the lighting now is a lot 
more consistent between the two surfaces. 

33 



34 



35 



36 



37 



Shadowing and occlusion would require us to use the depth buffer to reconstruct 
position. 
 
We use the luminance of the ambient term, rather than the colour, as we found that 
better preserved the correct result of the cube map at all times of day. 

38 



See the lighting of the mountains shifting. 

39 



We came up with the same method as Sebastien Lagarde and Charles de Rousiers for 
filtering environment maps at run time. Filtered importance sampling is absolutely 
key – so first, you generate mips with a simple box filter (which is fast), then you use 
filtered importance sampling to generate GGX filtered mips, which dramatically 
decreases the number of taps you need and the memory bandwidth. 
 
Batching cube map faces (and if you have the ability, cube map mip levels) together is 
key for performance – otherwise you’re running a lot of jobs on very small surfaces 
which has low GPU occupancy. 

40 



41 



We’re still bandwidth bound, despite filtered importance sampling. Our HDR texture 
format doesn’t help here – David Cook at Microsoft has suggested we try 
R10G10B10A2 instead, but we haven’t had time to experiment with that yet. 

42 



43 



44 



So a cell could be from any mip level and any size. In the end, we don’t really care – 
we have a cell of light probes and we need to get a light probe within it. 

45 



46 



How do we store our cells on the GPU? Well, we just allocate a fixed number of cells 
that we can have loaded at one time. 
 
When I talk about virtual buffers here, I should probably mention this is all software – 
we`re not doing anything in hardware. 

47 



48 



When I say allocate, obviously the memory is already allocated – we’re just marking it 
as allocated and copying the data across from the CPU. 

49 



50 



51 



52 



53 



Honestly, my code for this is pretty slow. I might put it on GPU in the end. 

54 



55 



56 



57 



But how would we interpolate between probes? We’d have to do four expensive taps, 
which is why instead we inject into a clip map… 

58 



The clip map is a 32x32x5 texture array – each “mip level” needs to be the same size 
as the one above as it covers a larger area. 
 
For last-gen, we just used a single level of this clip map to replace our old volume 
map which required a LOT of memory. 

59 



The sky lighting and indirect lighting full screen pass obviously takes the most time. 
It’s currently VGPR bound. 

60 



The quality issues are a pretty big deal for us – a light probe every 8m is clearly not 
enough, and 2nd order radiance transfer just can’t capture high frequency GI data. 
However, with our restrictions of using the same data across console generations, we 
did a good job of solving the problems we faced on Far Cry 3. 
 
You might be wondering why we went for lower memory requirements than Far Cry 
3, given the increased memory of current-gen hardware… well, we managed to use 
the memory optimisations on last-gen too, which saved us a few megabytes. 

61 



62 



Credit to Philippe Gagnon and Jean-Sebastien Guay for developing this system. 

63 



Grass also covers small plants 

64 



Grass also covers small plants 

65 



66 



Everything is rendered with alpha test; no alpha blending is used. 

67 



68 



If we fix our culling camera then look around the side, we’ll see that leaf clusters at 
the back of the tree have lower LODs. 
 
Obviously, please remember that we generate these leaf cluster LODs not just at 
various viewpoints around the camera, but also at different distances too, so far away 
the whole tree would turn blue. 

69 



70 



Video of the buzzer. You can see how the wind from the buzzer affects the trees, 
bushes and also the grass too. Although the grass didn’t have simulation, we used 
something very similar to our water ripple simulation. I’ll be going over some similar 
hacks we did like that to put the finishing touches on the vegetation in a few minutes. 

71 



72 



73 



The problem with this impostor system is the high memory requirement caused by 
the number of textures. We might look at reducing the number of views in the future. 

74 



75 



Although not demonstrated here, this really helps when a tree is lit from the side, or 
if two distant tree impostors intersect. 

76 



77 



It’s only possible to render this many vertices because we have the LODding system 
that we do. We aggressively cull high resolution LODs. Realistically, during rendering, 
the rosewood would have around 80,000 vertices max. 

78 



79 



80 



This is simple, but very effective. Obviously, this is an extreme example but it’s not 
too different to trees I’ve seen in Vermont in the autumn I guess. 

81 



82 



No noise on the left, noise on the right. 

83 



Video of noise on/off. 

84 



85 



Our antialiasing approach was presented by Michal Drobot at SIGGRAPH 2014, so 
please read that presentation for many more details. And of course, full credit (and 
also all the difficult questions) should go to Michal for the work he put into this. It 
consists of a combination of three techniques… 
 
Edge antialiasing – this should be self-explanatory. 
Temporal antialiasing – this refers to aliasing between two successive frames – we’d 
like to make this look smooth too. 
Temporal supersampling – supersampling is rendering at an increased resolution – 
we’d like to do that temporally, by sampling different pixels of the larger image each 
frame. 

86 



Here’s an overview of what’s going on… don’t worry… we’ll break it down over the 
next few minutes. 

87 



88 



We didn’t ship Far Cry 4 with colour flow coherency, hence we have some flickering 
present in the game. 

89 



Actually used centre pixel of 3x3 window rather than the mean, because that resulted 
in too many false positives due to too much smoothing. It’s also really worth reading 
Brian Karis’ excellent talk from SIGGRAPH 2014 where he discusses other various 
acceptance metrics. 
 

90 



So this is a visualisation of our acceptance metric, which I hope makes things a lot 
clearer. Again, we use the centre pixel rather than the mean. 

91 



92 



93 



2xRG has 2 unique columns and 2 unique rows. 

94 



QUINCUNX optimizes the pattern by sharing corner samples with adjacent pixels. 
It covers 3 unique rows and 3 unique columns, improving over 2xRG. 
It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask 
processing). 

95 



4xRG has 4 unique columns and 4 unique rows. 
 

96 



FLIPQUAD is a efficient 2 sample / pixel scheme that allows effective 4x Super-
sampling by sharing sampling points on pixel boundary edges. 
It combines the benefits of QUINCUNX and Rotated Grid patterns. 
Covers 4 unique rows and 4 unique columns, improving over 2xRG and QUINCUNX, 
matching 4xRG 
It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask 
processing). 
 

97 



Image courtesy [Akenine 03] 
We can see FLIPQUAD performing similar to 4xRotated Grid. 
It can provide arguably higher quality results. 

98 



Lower error estimate E -> closer to 1024 super-sampled reference. 
Image courtesy [Laine 06] 
 

99 



100 



Of course, this all sounds like a good idea but there are problems in practice… you 
have to interpolate UVs at sample positions to achieve actual supersampling, then 
you find that the derivative calculations are incorrect. This causes nasty problems like 
the following… 

101 



102 



103 



If we just reorder the samples so that samples 2 and 3 in the red frame are in fact 
samples 0 and 1, then the gradients are similar. 

104 



105 



106 



107 



108 



109 



110 



111 



112 



Yes, this scene is well in budget! It helps to be cross-generation sometimes. 

113 



114 



115 



116 



117 



118 



119 



120 



121 



122 



123 


