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Retrospective

● Our games were growing in scope
● More cars, more guns, more creatures, more of everything!

● Two growing problems

● The limits of our memory budget had been reached
● Layers of data management were become complicated

● Loading on demand wasn’t an option

● Compressing the sample data wasn’t an option



Retrospective

● Creating sample data was taking too much time
● Creating a large amount of sample data

● Maintaining consistency in design during production

● Could no longer ship games using only this approach!



Retrospective

Use less memory Use more CPU

Modular sound design!
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Palette-based sound design



Palette-based sound design
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Palette-based sound design

● Creating new sounds is efficient
● No longer requiring new sample data for every new sound

● Mix and match from the sample data already in the palette 

● The name of your sample data should be descriptive

● Design your palette with variety

● No longer a custom sample data for every sound
● Expect a slightly lower quality bar when you first start with this approach

● This will be offset as you become more proficient!

● Allows more time to iterate further on the quality of your sounds

● Will improve the overall quality of your game!
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Model-based sound design

Engine accelerating

Engine decelerating

Intake accelerating

Exhaust decelerating

Exhaust accelerating



Model-based sound design
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Separating data from structure

● We create model-based sounds using Sound Patches
● Each voice is a component

● Each component can be (optionally) controlled by logic

● The sound is the result of combining the components together at runtime

● Separate the data from the structure!
● The Sound Patch becomes a sound template

● The remaining structure defines the behavior of a sound “type”

● Different data will result in a different sound

● A separation between the behavior and the rendered result

● Changes to the template apply to all sounds using it
● New features

● Bug fixes



Separating data from structure

● In what ways can the template be configured?
● The sample data consumed by the voices

● Node values that cannot be driven externally

● Default interface values

● The composition of the components are dynamic
● Driven by configured data or by gameplay data

● The same sample data will create distinctive sounds with different compositions

● Sample data can be shared by many sounds!

● How do we create these configurations in Frostbite?
● Sound Patch Configurations!



Separating data from structure
Assault Rifle

Hi-Fi Wave (none)

Rattle Wave (none)

Peak Freq. 5000

Master Pitch 1.00

AEK-971

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopA

Peak Freq. 4500

Master Pitch 1.42

M16A4

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 4000

Master Pitch 1.00

M16A4 Silenced

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 6500

Master Pitch 1.00

Configurations

Sound Patch

Sound Patch Configuration



Template

Applying data inheritance

Config.
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B
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‘A’ can override 
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propagate from 
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not configured by ‘B’



Applying data inheritance
Assault Rifle

Hi-Fi Wave (none)

Rattle Wave (none)

Peak Freq. 5000

Master Pitch 1.00

AEK-971

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopA

Peak Freq. 4500

Master Pitch 1.42

M16A4

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 4000

Master Pitch 1.00

M16A4 Silenced

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 6500

Master Pitch 1.00

Inherited Default

Configured



Applying data inheritance

● Consistency between sounds with the same template
● The behavior of a sound “type” is defined in one place

● Changes to the template apply to all sounds using it

● Bug fixes

● New features

● You can make interactive complex sound
● Respond to the changing environment and game state

● Creating new sounds is efficient
● Values drive the behavior

● Existing sample data is used



Applying data inheritance

● The hierarchy organizes sounds in a logical way
● “M16A4” is a type of “M16”, which is a type of “Assault Rifle”

● Behavior can be inferred from the hierarchy

● Collapsed when sounds are built to reduce runtime cost

● Less requests made to disk to avoid repetition
● Variation from the dynamic combination of components

● Unique sample data isn’t necessarily required

● The behaviors of the components provides the variety

● Improve streaming performance for other game content

● Meshes

● Textures



Applying data inheritance

● The initial investment of creating models
● It can take a long time to get the desired behavior

● Sometimes one model is no longer enough

● Breaking one model into two models is challenging!

● Requires a technical understanding of the object you’re modelling

● What should the components be?

● Is it worth it?

● There is a performance cost
● More CPU time is required to drive the model

● More sample data requires decoding

● Can be executed in parallel



Summary

● Store less unique sample data in memory

● Low latency even with a large variety of sounds
● Shared sample data stays in memory

● Creating new sounds is efficient
● Just combine existing data in new and exciting ways

● Invaluable as the scope of your game grows

● Components in a model often share the same sample data

● Mix and match from the sample data already in the palette 

● New sounds often require only tweaks to existing sounds

● Great for DLC!



Summary

● Top 5 categories of usage

Dragon Age: Inquisition

Category Sounds Templates

GUI 257 2

Cinematic 1841 13

Exertions 111 4

Level 2250 19

Impacts 1009 3

Battlefield 4

Category Sounds Templates

GUI 55 4

Weapons 345 36

Vehicles 52 12

Destruction 55 3

Level 963 60

Need For Speed: Rivals

Category Sounds Templates

Engine 220 10

Wheels 25 6

Collisions 99 14

GUI 120 11

Narrative 126 1

336:1



Future developments

● Was more valuable then predicted
● Started as a relatively minor addition to the tool set

● Now one of the most critical audio workflows we have

● Requires more polish

● More data could be exposed as configurable

● Improved hierarchy editing
● Support side by side comparisons of configurations

● Visualization of entire configuration hierarchy

● Value combination, not just override



Conclusion
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Conclusion

● Questions?

martin.loxton@frostbite.com


