
Smart Sound Design using 
Modularity and Data Inheritance

Martin Loxton
Audio Programmer, Frostbite



Overview

● Retrospective

● Modular sound design

● Palette-based sound design

● Model-based sound design

● Separating data from structure

● Applying data inheritance

● Summary

● Future developments

● Conclusion



Retrospective



Retrospective

● Our games were growing in scope
● More cars, more guns, more creatures, more of everything!

● Two growing problems

● The limits of our memory budget had been reached
● Layers of data management were become complicated

● Loading on demand wasn’t an option

● Compressing the sample data wasn’t an option



Retrospective

● Creating sample data was taking too much time
● Creating a large amount of sample data

● Maintaining consistency in design during production

● Could no longer ship games using only this approach!



Retrospective

Use less memory Use more CPU

Modular sound design!



Combine

Runtime

Breakdown

Offline

Modular sound design

Gameplay

Voices
or 

Components

Sound Patch



Modular sound design
In

te
rf

a
c
e

Logic

V
o
ic

e
s Signal 

Processing
Sends



Palette-based sound design



Palette-based sound design

Voice

Voice

Voice

In
te

rf
a
c
e

L
o
g
ic

Voice

SendsVoice

Voice



Palette-based sound design

● Creating new sounds is efficient
● No longer requiring new sample data for every new sound

● Mix and match from the sample data already in the palette 

● The name of your sample data should be descriptive

● Design your palette with variety

● No longer a custom sample data for every sound
● Expect a slightly lower quality bar when you first start with this approach

● This will be offset as you become more proficient!

● Allows more time to iterate further on the quality of your sounds

● Will improve the overall quality of your game!



Combine

Runtime

Gameplay

Model-based sound design

Combine

Runtime

Gameplay



Model-based sound design

Engine accelerating

Engine decelerating

Intake accelerating

Exhaust decelerating

Exhaust accelerating



Model-based sound design

Core Bass

Rattle

Noise

Hi-Fi



Model-based sound design
In

te
rf

a
c
e

Logic

V
o
ic

e
s Signal Processing

S
e
n
d
s



Separating data from structure

● We create model-based sounds using Sound Patches
● Each voice is a component

● Each component can be (optionally) controlled by logic

● The sound is the result of combining the components together at runtime

● Separate the data from the structure!
● The Sound Patch becomes a sound template

● The remaining structure defines the behavior of a sound “type”

● Different data will result in a different sound

● A separation between the behavior and the rendered result

● Changes to the template apply to all sounds using it
● New features

● Bug fixes



Separating data from structure

● In what ways can the template be configured?
● The sample data consumed by the voices

● Node values that cannot be driven externally

● Default interface values

● The composition of the components are dynamic
● Driven by configured data or by gameplay data

● The same sample data will create distinctive sounds with different compositions

● Sample data can be shared by many sounds!

● How do we create these configurations in Frostbite?
● Sound Patch Configurations!



Separating data from structure
Assault Rifle

Hi-Fi Wave (none)

Rattle Wave (none)

Peak Freq. 5000

Master Pitch 1.00

AEK-971

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopA

Peak Freq. 4500

Master Pitch 1.42

M16A4

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 4000

Master Pitch 1.00

M16A4 Silenced

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 6500

Master Pitch 1.00

Configurations

Sound Patch

Sound Patch Configuration



Template

Applying data inheritance

Config.
A

Config.
B

Config.
C

‘B’ configures 
the template

‘C’ configures ‘B’

Default values in 
the template will 
propagate to ‘A’ 

‘A’ can override 
the values that 
propagate from 

the template

Values set in ‘B’ 
propagate to ‘C’

‘C’ can override 
values that 

propagate from ‘B’

Default values in the 
template will 

propagate to ‘C’ if 
not configured by ‘B’



Applying data inheritance
Assault Rifle

Hi-Fi Wave (none)

Rattle Wave (none)

Peak Freq. 5000

Master Pitch 1.00

AEK-971

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopA

Peak Freq. 4500

Master Pitch 1.42

M16A4

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 4000

Master Pitch 1.00

M16A4 Silenced

Hi-Fi Wave HiFi_LoopA

Rattle Wave Rattle_LoopB

Peak Freq. 6500

Master Pitch 1.00

Inherited Default

Configured



Applying data inheritance

● Consistency between sounds with the same template
● The behavior of a sound “type” is defined in one place

● Changes to the template apply to all sounds using it

● Bug fixes

● New features

● You can make interactive complex sound
● Respond to the changing environment and game state

● Creating new sounds is efficient
● Values drive the behavior

● Existing sample data is used



Applying data inheritance

● The hierarchy organizes sounds in a logical way
● “M16A4” is a type of “M16”, which is a type of “Assault Rifle”

● Behavior can be inferred from the hierarchy

● Collapsed when sounds are built to reduce runtime cost

● Less requests made to disk to avoid repetition
● Variation from the dynamic combination of components

● Unique sample data isn’t necessarily required

● The behaviors of the components provides the variety

● Improve streaming performance for other game content

● Meshes

● Textures



Applying data inheritance

● The initial investment of creating models
● It can take a long time to get the desired behavior

● Sometimes one model is no longer enough

● Breaking one model into two models is challenging!

● Requires a technical understanding of the object you’re modelling

● What should the components be?

● Is it worth it?

● There is a performance cost
● More CPU time is required to drive the model

● More sample data requires decoding

● Can be executed in parallel



Summary

● Store less unique sample data in memory

● Low latency even with a large variety of sounds
● Shared sample data stays in memory

● Creating new sounds is efficient
● Just combine existing data in new and exciting ways

● Invaluable as the scope of your game grows

● Components in a model often share the same sample data

● Mix and match from the sample data already in the palette 

● New sounds often require only tweaks to existing sounds

● Great for DLC!



Summary

● Top 5 categories of usage

Dragon Age: Inquisition

Category Sounds Templates

GUI 257 2

Cinematic 1841 13

Exertions 111 4

Level 2250 19

Impacts 1009 3

Battlefield 4

Category Sounds Templates

GUI 55 4

Weapons 345 36

Vehicles 52 12

Destruction 55 3

Level 963 60

Need For Speed: Rivals

Category Sounds Templates

Engine 220 10

Wheels 25 6

Collisions 99 14

GUI 120 11

Narrative 126 1

336:1



Future developments

● Was more valuable then predicted
● Started as a relatively minor addition to the tool set

● Now one of the most critical audio workflows we have

● Requires more polish

● More data could be exposed as configurable

● Improved hierarchy editing
● Support side by side comparisons of configurations

● Visualization of entire configuration hierarchy

● Value combination, not just override



Conclusion

Ben Minto
Audio Director

DICE

Jeremie Voillot
Audio Director

BioWare

Anders Clerwall
Technical Director

Frostbite

Andreas Almström
Lead Sound Designer

DICE

Mathias Grunwaldt
Audio Director

Ghost Games

● Acknowledgements



Conclusion

● Questions?

martin.loxton@frostbite.com


