
Ubisoft Cloth Simulation:
Performance Post-mortem &
Journey from C++ to Compute Shaders

Alexis Vaisse
Lead Programmer – Ubisoft

Motion Cloth

● Cloth simulation developed by Ubisoft

● Used in:

Agenda

● Cloth Simulation
Performance Post-mortem

● Journey from C++ to Compute Shaders

Wh a t i s t h e s o l u t i o n ?

Cloth simulation performance post-mortem

● The cloth simulation itself is quite fast

Simulation ~ 40%

Pre- & Post-simulation ~ 60%

● But it requires a lot of processing before and after

Cloth simulation performance post-mortem

● Skinning

● Interpolation system

● Mapping

● Tangent space

● Critical path

Skinning

In an ideal world:

● Set a material on the cloth

● Let the simulation do the job

Skinning

In practice:

● We need to control the cloth

● The cloth must look impressive even when the
character’s movement is not physically realistic

● The skinned vertices are heavily used to control the
cloth

Skinning

Maximum distance constraints:

● Maximum displacement of each
vertex

● Relatively to its skinned position

● Controlled by a vertex paint layer

Skinning

● The simulated vertex can
move inside a sphere centered
around the skinned vertex

● The radius of the sphere
depends on the color at the
vertex in the vertex paint layer

Skinning

Maximum distance
constraints:

● Maximum displacement
of each vertex

● Relatively to its skinned
position

Skinning

Skinning is also used by:

● Blend constraints

● Levels of detail

Skinning

● We definitely need to compute skinning

● Compute on the GPU then transfer

Serious synchronization issues

● Compute on the CPU

Most of the time before the simulation

Cloth simulation performance post-mortem

● Skinning

● Interpolation system

● Mapping

● Tangent space

● Critical path

Cloth simulation

Skinning

Interpolation system

Game frame rate ≠ simulation frame rate

Game frame rate:

● Usually locked to 30 fps

● But can be lower in a few specific places on consoles

● Can be lower and fluctuate on PC

● Also fluctuates a lot during the production of the game

Interpolation system

Game frame rate ≠ simulation frame rate

Simulation frame rate:

● Must be fixed (limitation of the algorithm)

● 30 fps if no collision or slow pace

● 60 fps if fast moving collision objects

Flags, walking characters

Running or playable characters

Interpolation system

● Cloth simulation called several times per frame

● Interpolate:

● The skinned vertices (position and normal)

● Collision objects (position and orientation)

Still quite cheap compared to skinning

Cloth simulation performance post-mortem

● Skinning

● Interpolation system

● Mapping

● Tangent space

● Critical path

Cloth simulation

Skinning

Interpolation

Mapping

● Map a high-res visual mesh

● To a lower-res simulated
mesh

WHAT?

Mapping

WHY?

● Simulating a high-res mesh is too costly

● It doesn’t give good results

Too silky, too light

● Ability to update the visual mesh without breaking
the cloth setup

Mapping

COST?

● Compute position and normal of each visual vertex

● Mapping ~ 10x faster than simulation

● But high-res mesh can have 10x more vertices!

Up to same cost or even higher in worst cases

Cloth simulation performance post-mortem

● Skinning

● Interpolation system

● Mapping

● Tangent space

● Critical path

Cloth simulation

Skinning

Interpolation

Mapping

Tangent space

● Tangent space is required for normal mapping

Tangent space

● Tangent space is required for normal mapping

● Compute it on CPU

● Compute it on the GPU

Costly

Requires specific shaders

Most of the time taken
after the simulation

Cloth simulation performance post-mortem

● Skinning

● Interpolation system

● Mapping

● Tangent space

● Critical path

Cloth simulation

Skinning

Interpolation

Mapping

Tangent space

Critical path

WHAT IS CRITICAL PATH?

Thread 0

Thread 1

Thread 2

Critical path

● Adding a task on the critical path

Bigger duration for the game engine loop

● Adding a task outside the critical path

Doesn’t change the engine loop’s duration

It’s “free” ● Unless task is too big

● Unless perfect balancing

Critical path

Is cloth simulation on the critical path?

● Scenario 1: cloth doesn’t need skinning

Critical path

Is cloth simulation on the critical path?

● Scenario 1: cloth doesn’t need skinning

● Dependency:

Cloth simulation Rendering

Not on the critical path

Critical path

Is cloth simulation on the critical path?

● Scenario 2: cloth does need skinning

Cloth
simulation

RenderingSkinningAnimation

Procedural
Animation

IK Physics Gameplay …

Critical path

Is cloth simulation on the critical path?

● Scenario 2: cloth does need skinning

Most of the time on the critical path

Hey! The game
is too slow!

Use more aggressive cloth
levels of detail, and it’s fixed!

Consequence:

● Cloth Simulation
Performance Post-mortem

Wh a t i s t h e s o l u t i o n ?

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

Xbox One PS4
Gflops Gflops

Peak power:

● Cloth Simulation
Performance Post-mortem

● Journey from C++ to Compute Shaders

Wh a t i s t h e s o l u t i o n ?

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

The first attempts

Resolve some constraints

Integrate velocity

Resolve collisions

Resolve some more constraints

Do some other funny stuffs

…

Compute Shader

Compute Shader

Compute Shader

Compute Shader

Compute Shader

Compute Shader

The first attempts

0%

20%

40%

60%

80%

100%

120%

140%

CPU GPU

5%

● Bottleneck = CPU

● Too many “Dispatch” calls

● The GPU version is 20x
slower than the CPU version!!

The first attempts

● Merge several cloth items to
get better performance

● It’s better, but it’s not enough

● Problem: all cloth items must
have the same properties 0%

20%

40%

60%

80%

100%

120%

140%

CPU GPU

27%

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

A new approach

● A single huge compute shader to
simulate the entire cloth

● Synchronization points inside the shader

A single “Dispatch” call instead of 50+

● Simulate several cloth items (up to 32)
using a single “Dispatch” call

● The GPU version is now faster than the
CPU version

0%

50%

100%

150%

200%

CPU GPU

160%

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

The shader

● 43 .hlsl files

● 3,400 lines of code

(+ 800 lines for unit tests & benchmarks)

● Compiled shader code size = 75 KB

The shader – Easy parts

0 1 2 3 4 5 63
…

● Thread group:

There must be no dependency
between the threads

● We do the same operation on 64 vertices at a time

The shader – Easy parts

Read some global properties to apply (ex: gravity, wind)

Read position
of vertex 0

Read position
of vertex 1

Read position
of vertex 63

…
Compute Compute Compute…

Write position
of vertex 0

Write position
of vertex 1

Write position
of vertex 63

…

The shader – Easy parts

Read some global properties to apply (ex: gravity, wind)

Read position
of vertex 64

Read position
of vertex 65

Read position
of vertex 127

…
Compute Compute Compute…

Write position
of vertex 64

Write position
of vertex 65

Write position
of vertex 127

…

The shader – Easy parts

Read property
for vertex 0

Read position
of vertex 0

Read position
of vertex 1

Read position
of vertex 63

…

Compute Compute Compute…
Write position

of vertex 0
Write position

of vertex 1
Write position
of vertex 63

…

Read property
for vertex 1

… Read property
for vertex 63

The shader – Easy parts

Read property
for vertex 0

Read property
for vertex 1

… Read property
for vertex 63

Ensure contiguous reads to get good performance

Coalescing = 1 read instead of 16

i.e. use Structure of Arrays (SoA) instead of Array
of Structures (AoS)

The shader – Complex parts

● A binary constraint modifies
the position of 2 vertices

Constraint

Vertex A Vertex B

The shader – Complex parts

● Binary constraints: ?

?

● 4 constraints updating the position of the same vertex

4 threads reading and writing at the same location

Undefined behavior

?

The shader – Complex parts

● Binary constraints: Group 1

Group 2

Group 3

Group 4

GroupMemoryBarrierWithGroupSync()

GroupMemoryBarrierWithGroupSync()

GroupMemoryBarrierWithGroupSync()

The shader – Complex parts

● Collisions: Easy or not?

• Collisions with vertices Easy

• Collisions with triangles

Each thread will modify the
position of 3 vertices

You have to create groups
and add synchronization

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

Optimizing the shader

● General rule:

CPU GPU

Vertex
128 bits
(4 floats)

64 bits
(21:21:21:1)

Normal
128 bits
(4 floats)

32 bits
(10:10:10)

0%

100%

200%

300%

GPU -

No compression

GPU -

Compression

x2.3
Bottleneck = memory bandwidth

• Data compression:

Optimizing the shader

● Use Local Data Storage (aka Local Shared Memory)

CU CU CU CU

VRAM

CU CU CU CU

64 KB
LDS

Compute Unit
(12 on Xbox One,

18 on PS4)

Optimizing the shader

● Store vertices in Local Data Storage

Copy vertices from VRAM to LDS

Step 1 – Update vertices

Step 2 – Update vertices

Step n – Update vertices

Copy vertices from LDS to VRAM

…
0%

50%

100%

150%

200%

VRAM LDS

x1.9

Optimizing the shader

Use bigger
thread groups:

0 1 2 3 4 5 63
…

Load

Wait

Compute

Load

Wait

Compute

● With 64
threads, the
GPU is waiting
for the memory
most of the
time

Optimizing the shader

Use bigger
thread groups:

0 1 2 3 4 5 63
…

64 127

…
Load

Load● With 256 or
512 threads,
we hide most
of the latency!

Compute

Compute

● But…

Optimizing the shader
0 1 2 3 4 5 63

…

Dummy vertices
=

Useless work!

Number of vertices usually not
a multiple of 64

Optimizing the shader
0 1 2 3 4 5 63

…
64 127

…

Bigger thread group = more dummy vertices

Optimizing the shader
0 1 2 3 4 5 63

…
64 127

…
128 191

…
192 255

…

Bigger thread group = more dummy vertices

Optimizing the shader

0

20

40

60

80

100

120

140

160

180

64

128

256

512

Performance (higher = better)

Cloth’s
vertices

Optimizing the shader

To get the best performance:

● Use several shaders with different thread group
sizes

● Use the most efficient shader depending on the
number of vertices of the cloth

Optimizing the shader

0

20

40

60

80

100

120

140

160

180

64

128

256

512

Performance (higher = better)

Cloth’s
vertices

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

The PS4 version

● Porting from HLSL to PSSL is easy:

#ifdef __PSSL__

#define numthreads NUM_THREADS

#define SV_GroupIndex S_GROUP_INDEX

#define SV_GroupID S_GROUP_ID

#define StructuredBuffer RegularBuffer

#define RWStructuredBuffer RW_RegularBuffer

#define ByteAddressBuffer ByteBuffer

#define RWByteAddressBuffer RW_ByteBuffer

#define GroupMemoryBarrierWithGroupSync ThreadGroupMemoryBarrierSync

#define groupshared thread_group_memory

#endif

The PS4 version

Buffer

● On DirectX 11:

Compute
shader

Buffer

Compute
shader

Synchronization

Buffer

CopyResource

Synchronization

Copy

1 2

3

The PS4 version

● On PS4:

No implicit synchronization, no implicit buffer duplication

You have to manage everything by yourself

Potentially better performance because you know when

you have to sync or not

Also available on Xbox One
(use fast semantics contexts)

The PS4 version

• We use labels to know if a buffer is still in use
by the GPU

• Still used  Automatically allocate a new buffer

• “Used” means used by a compute shader or a copy

• We also use labels to know when a compute shader
has finished, to copy the results

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

What you can do in compute shader

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

0

200

400

600

800

1000

1200

1400

1600

1800

CPU GPU

Xbox One PS4
Gflops Gflops

Peak power:

What you can do in compute shader

Using DirectCompute, you can do almost
everything in compute shader

The difficulty is to get good performance

What you can do in compute shader

● Efficient code = you work on 64+ data at a time

● If you have less data:

if (threadIndex < 32)

{

…

};

if (threadIndex == 0)

{

…

};

// Read the same data on all threads

// All threads do the same computation

// They write the same result

…

But this is
likely to be

the
bottleneck of
the shader!

What you can do in compute shader

● Example: collisions

● On the CPU:

Compute a bounding volume
(ex: Axis-Aligned Bounding Box)

Use it for an early rejection test

Use an acceleration structure
(ex: AABB Tree) to improve performance

What you can do in compute shader

● Example: collisions

● On the GPU:

Compute a bounding volume
(ex: Axis-Aligned Bounding Box)

Just doing this can be more costly than
computing the collision with all vertices!!!

//upload.wikimedia.org/wikipedia/en/0/09/Stopsign_sing.png
//upload.wikimedia.org/wikipedia/en/0/09/Stopsign_sing.png

What you can do in compute shader

● Compute 64 sub-AABoxes 0 1 2 3 4 5 63
…

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes
0 1 2 3 4 5 63

…

We use only 32
threads for that

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes

● Reduce down to 16 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 16
threads for that

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes

● Reduce down to 16 sub-AABoxes

● Reduce down to 8 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 8
threads for that

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes

● Reduce down to 16 sub-AABoxes

● Reduce down to 8 sub-AABoxes

● Reduce down to 4 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 4
threads for that

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes

● Reduce down to 16 sub-AABoxes

● Reduce down to 8 sub-AABoxes

● Reduce down to 4 sub-AABoxes

● Reduce down to 2 sub-AABoxes

0 1 2 3 4 5 63
…

We use only 2
threads for that

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes

● Reduce down to 16 sub-AABoxes

● Reduce down to 8 sub-AABoxes

● Reduce down to 4 sub-AABoxes

● Reduce down to 2 sub-AABoxes

● Reduce down to 1 AABox

0 1 2 3 4 5 63
…

We use a single
thread for that

What you can do in compute shader

● Compute 64 sub-AABoxes

● Reduce down to 32 sub-AABoxes

● Reduce down to 16 sub-AABoxes

● Reduce down to 8 sub-AABoxes

● Reduce down to 4 sub-AABoxes

● Reduce down to 2 sub-AABoxes

● Reduce down to 1 AABox

This is ~ as
costly as

computing the
collision with
7 x 64 = 448

vertices!!

What you can do in compute shader

● Atomic functions are available

● You can write lock-free thread-safe containers

● Too costly in practice

The brute-force approach is
almost always the fastest one

What you can do in compute shader

Port an algorithm to the GPU
only if you find a way

to handle 64+ data at a time
95+% of the time

Conclusion:

Journey from C++ to Compute Shaders

● The first attempts

● A new approach

● The shader – Easy parts – Complex parts

● Optimizing the shader

● The PS4 version

● What you can & cannot do in compute shader

● Tips & Tricks

Sharing code between C++ & hlsl

#if defined(_WIN32) || defined(_WIN64)

|| defined(_DURANGO) || defined(__ORBIS__)

typedef unsigned long uint;

struct float2 { float x, y; };

struct float3 { float x, y, z; };

struct float4 { float x, y, z, w; };

struct uint2 { uint x, y; };

struct uint3 { uint x, y, w; };

struct uint4 { uint x, y, z, w; };

#endif

What to put in LDS?

LDS
Yes No

Yes
VRAM

Contiguous
access

No

Random
access?

Accessed
several
times?

Memory consumption in LDS

● LDS = 64 KB per compute unit

● 1 thread group can access 32 KB

2 thread groups can run
simultaneously on the same
compute unit

● Less memory used in LDS

More thread groups can run in parallel

32 32

21 21 21

16 16 16 16

Memory consumption in LDS

● LDS = 64 KB per compute unit

● 1 thread group can access 32 KB

● Less memory used in LDS

More thread groups can run in parallel

● 256- or 512-thread groups: No visible impact

● 64- or 128-thread groups:

Visible impact on performance

Optimizing bank access in LDS?

● LDS is divided into several banks (16 or 32)

● 2 threads accessing the same bank  Conflict

Visible impact on performance on older PC
hardware

Negligible on Xbox One, PS4 and newer PC
hardware

Beware the compiler

//CopyFromLDSToVRAM();

CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

Beware the compiler

CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

CopyFromLDSToVRAM();

The last copy
takes all the time

This doesn’t
make sense!

Beware the compiler

CopyFromVRAMToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

ReadInputFromLDS();

DoSomeComputations();

WriteOutputToLDS();

//CopyFromLDSToVRAM();

● Data written in LDS
are never used

● The shader compiler
detects it

It removes the
entire code

Optimizing compilation time
float3 fanBlades[10];

for (uint i = 0; i < 10; ++i)

{

Vertex fanVertex = GetVertexInLDS(neighborFan.m_VertexIndex[i]);

fanBlades[i] = fanVertex.m_Position - fanCenter.m_Position;

}

float3 normalAccumulator = cross(fanBlades[0], fanBlades[1]);

for (uint j = 0; j < 8; ++j)

{

float3 triangleNormal = cross(fanBlades[j+1], fanBlades[j+2]);

uint isTriangleFilled = neighborFan.m_FilledFlags & (1 << j);

if (isTriangleFilled) normalAccumulator += triangleNormal;

}

Shader compilation time

Loop 19”

Manually unrolled 6”

Iteration time

● It’s really hard to know which code will run the
fastest

● The “best” method:

● Write 10 versions of
your feature

● Test them

● Keep the fastest one

● A fast iteration time really helps

● Loops ordering

● Which data to compress?

● Which data to put in LDS?

● Unroll loops?

● Change data organization?

Bonus: final performance

CPU GPU CPU GPU

Xbox One PS4

PS4 – 2 ms of GPU time – 640 dancers

Thank you!

