
1

2

It was a dark and stormy night. Seriously. There was a rain
storm in Wisconsin, and the line noise dialing into the Unix
machines was bad enough to keep putting garbage characters
into the command line arguments. And the tools, rather than
giving an error message, crashed. And that was the start of
fuzzing. Fuzzing is enormously effective. If your software is
successful enough, someone will fuzz it. It would be nice if
that someone was you.

3

The core is, it finds bugs. From an attacker’s perspective,
most bugs found are useless, especially if the software was
built with modern mitigations. However, the defender’s
dilemma means that only one useful bug is required. And
while fuzzing requires enough of a knowledge of the protocol
to bypass content agnostic mitigations (checksums, crcs, etc),
not only does it not require a deep understanding of the
protocol beyond that, it often punishes too much knowledge.
If the fuzzer is too aware of how things are “supposed to be”,
it will miss bugs. And finally, fuzzing is a great tool to leverage
on top of test automation. Obviously, for an attacker, who
doesn’t have test automation for a product, a fuzzing
automation suite is built instead. Either way, the fuzzers can
run constantly, and the bugs can be harvested for analysis
when time permits.

4

This is the flow graph of a single parsing function, in a
network facing process running as SYSTEM.

5

This is the section that was vulnerable to a remote attacker
getting arbitrary code execution by overflowing a static buffer.
Manually audits of complex parsers are expensive, difficult,
and require a difficult to acquire skill. This is the sort of thing
that fuzzers excel at finding.

6

7

The simple rule of thumb is that data controls code flow. If we
didn’t take different actions based on data, we wouldn’t use
the data at all. As an attacker, I want to use the data to drive
code flow in ways that you as the developer did not intend. If
you are parsing data I provide (“untrusted data”), you have to
assume it is hostile. If you are parsing data you provide, you
don’t have to, as long as you can prove it wasn’t tampered
with. This is why signing the developer provided data is a win,
as we’ll see later, you can skip fuzzing signed data (although
you should fuzz the signature verification code at some point).

8

If the data is coming from two different machines, you need to
consider it hostile (even if it is believed to be coming from the
developer’s server) because there are too many ways for an
attacker to inject the data.

9

This is an example of a client-server-client vulnerability. The
hostile data was provided by an attacker, but forwarded by the
server as a fully legitimate method. Had this been discovered
and used by an attacker, rather than by a security researcher,
it could have been used to create a Steam based worm.

10

Finally, we look at privilege levels on the machine. For
example, if an attacker can provide data from an unprivileged
account that is used by a game component (like an updater)
that runs with higher privileges, we need to worry about that.
There is an exception here. We don’t need to worry about files
that can only be written or modified by a highly privileged
account (root, Administrator, etc). If someone already has
privileges on the system, they don’t need to attack you. From
a practical perspective, anything loaded from Program Files on
Windows is safe, unless you have deliberately weakened those
protections.

11

Whether mutating existing data is easier or creating new data
is easier depends on what you have available to you. If you
have an existing wide range of test data (or a corpus of real
data, like, say, all the content for the game), mutation is
easier. This is why attackers often use generation fuzzing for
network fuzzing (which usually requires state tracking), but
mutation fuzzing for files (which doesn’t, and often has
examples)

12

The goal is to get data to the parser we care about, and get it
there quickly. This means it can make sense to build testbeds
that are just the parser you care about, or to have build
versions or command line arguments that let you pass data
straight to the parser you need. You’ll want to run the parser
quickly, and then terminate the process after a short period of
time (or have it parse the data and then exit normally), so
that you can run as many iterations as possible.

13

Finally, you need to know when something bad happens. The
obvious case is an actual crash, but you also want to look at
things like memory usage (if I can send a network packet that
causes you to allocate 2 gigabytes of RAM, that’s an issue)
and CPU usage. In all of these cases, you want to monitor the
process under test. When crashes happen, you need to save
as much data as you can about the crash so that you can
reproduce it. In the case of files, the obvious thing to save is
the malformed file. For network fuzzing, since it has a fair
amount of entropy in it, you’ll want to save things like the
random number seed, the settings, and as much as possible
about the changes that were made.

14

While ad-hoc fuzzing (especially for network traffic) is
possible, the biggest return on your investment is to invest in
an automation infrastructure. For file fuzzing, this is relatively
easy. For network fuzzing, you have more work to do. If your
multiplayer game supports AI players, it can be a big help if
the AIs can run on different computers, and play against each
other.

15

You will likely have a whole set of different parsers to fuzz.
Each will likely have a different set of configuration
information (a corpus of test files, or a set of settings for the
command line, and so on). You want to have a central place to
manage this from, even if it is just a web page of config files
the machines can pull from

16

Put all your crashes and other related information in one
central place. This lets you have machines join your fuzzing
farm part time (for example, when the devs go get some
actual sleep), but not affect a machine when it is being used.
Plus, it lets you do crash triage with one set of crashes.

17

For the same reason, save the logs (and correlate them with
crashes). Ideally, you should also keep stats on what
configurations aren’t finding bugs, and review those.

18

At the very top of the “wish list” for automation is single point
control of your fuzzing. This can be done these days with a
simple web page and web controls, and you likely already
have the expertise to implement this kind of web based light
client in house already. This would let you have a config-of-
configs, and fuzz farm elements would use that to determine
what sort of fuzzing they should do, and then get the right
configuration.

19

The automation steps I just outlined are an ideal. They may
well be too much of an investment up front. In the simplest
case, you want to simply run tests on one machine (or two, if
you are testing network code), with tests running under a
simple test harness that simply runs the iterations.

20

21

When I say that you always want to fuzz the logical layer, that
doesn’t mean you want to target the logical layer when you
are fuzzing the transport layer.

22

Because you have the source code, it is easiest for you to do
network fuzzing by doing it from inside the game. This is
where you’d hook the code. You will probably want a set of
options set from a control line (or at build time, if that is not
viable for your platform). For example, you may want to fuzz
everything, only fuzz in a lobby, only fuzz in a given game
mode, or only fuzz the login/authentication mechanism.

23

Most logical packets are in some variant of a
Type/Length/Value scheme. One obvious optimization is to
eliminate the length if the length is constant for a given type,
and so we have a set of possible encoding schemes.

24

The first and easiest to implement is to randomly change the
message type (the message ID) to another valid type some
small percentage of the time. Leave everything else the same

25

We can also malform the value of the packet. Changes can
include random bit flips, replacing individual bytes (0x0, 0xff,
0xfe, 0x7f, and 0x80 are all good, as are changing a byte by
one in either direction), deleting data, or injecting new data. If
you change the length of the data here, go ahead and make
the length field also conform to the changed data.

26

Finally, we can leave everything else alone, but just change
the length field, and see what happens.

27

28

29

The obvious failure case here are “globbed” files, where an
entire level is turned into a pre-combined binary blob, with
pointer fixups on load. This is an incredibly dangerous
structure, and absolutely must be fuzzed. Fuzzing the sub-
parsers won’t get you that final fixup. The conclusion is that
isolating parsers is a “nice to have” optimization for more
iteration coverage, but not a replacement for testing against
the full product.

30

I was once asked, by a major publisher, “do we need to verify
that we signed the executable, or is it enough that it is
signed”.

31

We just fundamentally don’t care about “root to root” exploits.
If an attacker has that level of privileges, the system is
already completely compromised.

32

33

Pretty much anything short of “signed by a private key that
we have and you don’t” isn’t going to stop an attacker. Your
issue isn’t data corruption, it’s an actual attacker. They will
reverse engineer your custom CRC, and skate on by.

34

Either of these options is good. One is significantly easier to
implement. The key is that weak detections only protect you
against naïve fuzzing, they do not protect you against an
attacker or get you any benefit. Don’t make the mistake of
thinking they will save you.

35

You’ll note that these are basically all the changes we were
talking about in network fuzzing the payload. Binary data is
pretty straightforward to muck with. Don’t worry about
understanding the content of the file passed anything needed
to bypass the weak detections. It is important not to make too
many changes to a file (you’ll probably only want to make one
or two changes, certainly no more than five per iteration).

36

The key to changing something like XML is that you probably
don’t want to spend a lot of time fuzzing the XML parser itself,
you want to fuzz the thing that consumes XML. If you wrote
your own XML parser, then throw in some binary changes as
well. Again, you want to make a very small number of
changes per iteration.

37

38

39

40

Crashes with the same major hash are in the same code path.
Crashes with the same minor hash are very likely the same
bug. Crashes with the same minor hash and type are almost
certainly the same bug. Major hashes tend to persist from
build to build, Minor hashes are build specific

41

There are existing tools (again, CrashWrangler or !exploitable)
that you could use. !exploitable is an open-source product, so
the source is available if you need to write your own tool.

42

43

