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Left-most image: “metaballs” or “blobbies” merge together to 
generate joined blobs that resemble a lava lamp. Fun 
technique (at least for the first 5 minutes), and readily 
recognizable.d Not likely to be used for modeling general 
scene geometry. Underlying volumetric field may be used to 
model lighting. 

 

Middle image: in games, implicit surfaces commonly used to 
generate surfaces to render simulated fluids 

- SPH simulation…Lagrangian approach. This is common for 
real time physics as it can leverage RBD collision system for 
fluid/solid interaction, requires no gridding, etc. Implicit 
surface generated using metaballs approach based on 
particle position with size based on the mass of fluid carried 
in that particle. 

- Eulerian-based fluids solved on a grid, such as Lattice 
Boltzmann. Fluid properties such as density are known at 
each cell of a grid, and level set implicit geometry methods 
can be used to extract a surface mesh to render. 
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Right-most image: simple vector fields are sometimes used for path 
planning…let target point be a magnet, or “sink,” and obstructions a 
“source”. Set an initial velocity and let the source push the object 
(bot, character, particle) away from the source and pull it towards 
the sink. The source and sink increment the velocity to generate an 
obstacle avoiding path towards the target. Trace streamlines to 
generate implicit path that is pushed away from obstructions and 
pulled towards the target. 

2 



3 



4 



5 



6 



For extraction of a mesh, or “polygonalization,” marching 
cubes (squares in 2D) has ambiguities while marching 
tetrahedrons (triangles) avoids those ambiguities. See one of 
the many, many tutorials/references available on the Internet. 

 

The mesh extraction use case might, for example, be used to 
draw the fluid surface illustrated on the first slide. 
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Idea is that you place these kernel functions at strategic 
locations, and when summed across the domain, the result is 
a smooth field function from which geometry can be 
extracted. 

 

Radial Basis Functions are a class of kernel functions that are 
well studied for use in implicit modeling. 
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Scatter plots are through centerline. Horizontal axis is distance 
from center, and vertical axis is the value of the RBF. 

 

Blue is low value. Red is high value. 

 

p is an arbitrary point in the field and A is the center of the 
RBF. 

 

Here, the curve represents the signed distance field for a unit 
radius circle or sphere located at the origin. Notice that the 
value of the field is negative inside the sphere and positive 
outside the field, and the sphere itself is located at isosurface 
value 0. 

 

Obviously this could negated for positive values in the interior 
and negative values in the exterior. 
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This is useful for rendering specific singular geometries, such 
as circles/spheres since we can define the function such that 
isosurface zero is on the surface. The thick dark circle in the 
picture is isosurface zero. The discontinuity at r = 0 makes 
this function less desirable for more sophisticated modeling. 
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This is also called the thin plate spline RBF. 

 

In this case, notice there are two zero points…one at the 
center and one at p-A = 1. 

 

Also notice this function has a continuous first derivative. The 
second and higher derivatives have discontinuities when p = 
A. So, here we have C1 continuity where the signed distance 
field gave us C0. This function should enable modeling 
smoother implicit surfaces…we’ll get into that in a few slides. 
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The Gaussian distribution is nice because it dissipates to zero 
at infinity. This is intuitive, and you can easily see what would 
happen if you superimpose several kernels across the field. 
Easier to mentally “see” what the field function will look like in 
combination with several such RBF kernels. 
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Notice that this RBF has a range that is bounded between 0 
and 1. It has compact support, and goes to zero at infinity. 
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This looks like the function used to generate metaballs/blobby 
surfaces. It is intuitive. Value is interpolated between points, 
but fall off ensures there is a local maximum at each point; 
each point remains distinguishable. There is an obvious look to 
metaballs/blobbies that is impossible to disguise. For some 
applications, such as light field modeling in which the 
geometry of isosurfaces is never directly rendered, this may 
be suitable. For modeling game level geometry, this function 
yields geometry that has a distinctly procedural/generative 
look that may rarely be suitable. 
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Both of these RBF’s have non-compact support, with a range 
that goes to infinity. 
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Back to the signed distance field. Notice that this function fills 
in the space between the kernel points, unlike the Gaussian 
kernel. 
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Similarly, the biharmonic RBF fills the space between the 
kernel points. 

 

Infinite support is the thing that makes this happen. The 
effect of each kernel is to create a field that fills all space with 
nonzero values, unbounded at infinity. 
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These are biharmonic RBF kernels 
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There is an isocurve that interpolates the points, but it’s value 
is not known without evaluating the field. Ideally, we’d like to 
control the value of the isocurve/surface that passes through 
our control points. How can we do that? 
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A constant offset to the total field value only works if all the 
points are on the same isocurve/surface. This is only true 
when the kernels are spaced uniformly on a circle or 
sphere such that the field is symmetric! Break this 
symmetry, and a constant offset no longer works, in general, 
to shift the value of the curve/surface passing through the 
points. We need a generalized method to adjust the field. 
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These are biharmonic RBF kernels 
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These are biharmonic RBF kernels 
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These are biharmonic RBF kernels 
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See Numpy, an open source Python add on library, for an 
implementation of an SVD solver. 
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These are biharmonic RBF kernels 
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These are biharmonic RBF kernels 
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By adding the planar offset, which minimizes the curvature, 
we get a more reasonable curve/surface. This is a better 
choice for modeling implicit surfaces with RBF’s 

 

Do not have to have four external points. Need at least one. 
May get better results if you have more than one, and if they 
are uniformly distributed on a circle (2D) or sphere (3D). 
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choice for modeling implicit surfaces with RBF’s 
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1 min for intro to potential fields 

 

Mention conservation laws 

 

Laplace’s equation as representation of conservation of mass 
of a fluid 

 

Yes, we’re getting into physics a bit, but it enables some 
pretty cool and useful implicit surface and curves 
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1 min for intro to potential fields 
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Principle of superposition allows us to generate a desirable 
field by introducing a set of primitive solutions that control the 
field in a meaningful way. 
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Don’t freak out about inverse square root or discontinuity 
when r == 0! 

 

We can evaluate anywhere. Doesn’t have to be on a grid. 

 

Infinite support, but at the location of the kernel….influence 
decays to zero at infinity. So this is not good for fitting 
surfaces to scattered fields. 

 

(Think about whether or not to introduce the negative sign 
here…) 

 

Notice that this is an RBF 
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If we look at a 2D source, however…story is different. Infinite 
support! So we can use this to model scattered point clouds. 

 

Ask me afterwards if you want to understand why this is ln(r) 
instead of 1/r! 

 

There also exists a closed form equation for the source 
distributed over a polygon in 3D 

 

Notice that this resembles the biharmonic RBF. The single 
point version is an RBF, but the line segment version is not. 
There also exists a closed form kernel function for a polygonal 
potential source in 3D. It is quite ugly and computationally 
expensive. 
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We can use the 2D source (point or constant segment) to 
model point clouds, but also to model flow relative to closed 
surfaces. 

 

We can use a constant distributed source to generate a 
smooth potential off of an area surface. We could generate an 
offset surface using point sources, but this would not be 
smooth. 

 

Need to fill in details of boundary conditions (Dirichlet vs. 
Neumann), formulation of system, point to references to solve 
linear system. 
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We can use a constant distributed source to generate a 
smooth potential off of an area surface. We could generate an 
offset surface using point sources, but this would not be 
smooth. 

 

Dirichlet boundary conditions refer to the direct specification 
of the total potential. Note that the traditional RBF-based 
interpolated field technique, shown in the earlier slides, also 
specifies the total field value for each control point. This too is 
an example of Dirichlet boundary conditions. 

 

Another type of boundary condition, the Neumann boundary 
condition, specifies the value of the derivative in the desired 
gradient direction instead. This is certainly used extensively 
for potential flow modeling and could be some benefit to doing 
this for implicit surface modeling. The velocity equations given 
on these pages provide enough information to formulate a 
system of equations based on Neumann boundary conditions. 
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It is a slight hack to superimpose additional flow kernels 
without re-solving the equations for element strengths. The 
result will at best be approximate. Boundary conditions will be 
violated. But for visual effects this may be acceptable. 
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Far field potential is simply the potential far from the kernels. 
For all potential flow kernels based on linear and polygonal 
control geometry, the far field is asymptotic with an equivalent 
point element. 
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