
Turning 100,000,000 Friends
Into Game Developers:

Adding User Generated Content
to Poptropica

Christopher A. Barney
Systems Engineer and Game Designer

Wait, what's a Poptropica?
● Web based side scrolling adventure platformer
● For kids from 6 to 15 years old
● Conceived in mid 2006 by Jeff Kinney
● Launched on the first of September 2007
● There are now 50 Poptropican Island adventures
● Narrative focus with each island telling a story
● Also a social game:

●Common rooms for 8 players on every Island
●Chat / Emote
●Head to head mini-games

So, it's cool, but is it BIG?!?

• 500,000,000+ characters created
• 8,000,000 active users per month
• 28 minutes on the site each visit
• 3.25 visits a month
• That's 12,133,333 kid hours a month.
• 1,385 kid years ... every month...
• 99,726 years spent playing our game since launch...
give or take a thousand years...

How could this happen?!?
● Great Writing
● Great game play
● Easy access
● Free
● Secret Ingredient
● Luck?

At what cost?

1. We live on an endless content
production treadmill.

2. New content production has diminishing
returns.

3. Success makes innovation harder.

Goals
Realms was created to give the players :

1. A new gameplay experience that still feels like part of Poptropica
2. A new way to express themselves
3. Something fun to do that never ends!
4. Let the players share their creativity with others

Challenges
Our basic design must:
• Create an interesting procedural world
• Relate new gameplay to our core island experience
• Provide a natural cohesive way to access vast

amounts of content
• Incorporate new engine features in a way that

adds to the experience (sound design, cinematic)

Above and beyond the normal challenge of adding user
generated content we must ...
● maintain COPPA compliance (PII & TTP)
● protect the privacy of our users
● maintain the level of simplicity and clarity that are the
foundations of the Poptropica experience

More Challenges

Design:
● Moved from a single infinite random world to many discrete
worlds
● Settled on the Metaphor of Realms
● In game world editing
● Gameplay loop economy
● Progression of tools and powers
● Create an interactive world
● Launch early and iterate!

Monetization
Contribute to our bottom line without negatively impacting the
user’s experience

● Integrated advertising as part of the Realms offering

Restrict some of the friends content to members
● Members can create more Realms.
● Members have more ‘biome’ types (Lava, Crystal)
● Members can Share their Realms
● Members get exclusive building materials

Technology:
Our technology is remarkably unremarkable
● Apache web servers running on Centos
● Our code is in PHP
● Database is just MySQL
● Our multi-player servers run on Red5 on Tomcat
● The game client is Flash
● We use Akamai as our content delivery network

Technology Challenges
 Q: Where should we store saved world files for millions and
millions of users?
 A: Amazon S3

Q: How do you Minimize the size and number of files you
save?
A: Save only the differences from the procedural seed and
save only scenes that have been modified.

Issues of Scale

● Potential user base > 100,000,000
● Between 3 and 20 Realms each
● Realms between 10 and 60 scenes wide.
● Thumbnail files for each Realm in addition to the
save files.

Technical Success!
● Our internal back end held up and S3 proved very effective
● Features added with zero downtime
● Zero data loss (Saving and loading was not interrupted)*
● Continuous integration testing of codebase during development
● Full deployment testing
● Hot launch is difficult and maybe not worth it for others

Pitfalls: Learning Curve
While our end design looks cohesive and conforms to the high
level goals of or product we don’t always get it right on the
first try…
● Prototypes had no tutorial
● Initial intro section too long
● Second intro too short
● Initial interface obscured important features

Pitfalls: Monetization
● Identified methods of ad delivery

● Ad scenes
● Ad Items/Textures

●Advertisers often don’t understand the value of a unique
offering
●Advertisers often ask for or ‘insist on’ things that will
negatively impact gameplay.
●Raising our (under age) players desire for membership does
not increase their parent’s desire to buy it for them.

Pitfalls: General Design
● First design: Written in AS2, technically impressive but
missed the mark on art style and would have been difficult to
save.
● Second design: Better art and gameplay, lacked player
progression.
● Third design: Gained progression, resource gathering based,
lacked motivation to build.
●Public Launch: Incorporated building into the progression,
lacked narrative direction

Pitfalls: Limited Features
 ● Need to iterate on core features
● Push to hit an aggressive launch date
● Lack of player testing prior to launch window meant we

needed to be able to adjust direction to match post
launch player feedback

● Resulted in there not being a lot to do if you were not a
very creative/creation oriented player.

● We went from crunch back to development of new
features immediately post launch.

Outcome: Time on site

● Realms users have a session length of
about one hour, the average user of islands
has a session of less than half that.

Outcome: Metrics
● 180 Days since launch
● 1,400,000 Realms Users
● 2,000,000 Realms Created
● 18,000,000 Scenes Saved
● 1,000,000,000 Poptanium Mined
● More than 40% of Poptanium spent

Phase 2: Sharing Your Realms!
We knew this was important… why did we wait?

Maintaining COPPA compliance means a manual approval process
● That process required a whole new Realms display engine
● BUT with a single front-end developer we had to complete core functionality first
● The back-end was built with the need to share in mind
● BUT we knew it would require a single developer several months to develop

Goal:
Allow users to share their creations with other players.

Design:
● From the Realms screen you can share your Realm.
● Shared Realms go into a queue to be reviewed by the developers
● Limit sharing to members as a membership driver and to make the workload manageable
● Disable building tools in shared Realms
● Custom review tool that can render a small version of a Realm on a single screen
● Public Realms view with sets of 10 shared/approved Realms
● Users have the ability to page through more screens of Realms
● Users have the ability to rate (like) Realms from the public Realms screen

Implementation:

● Multiple versions of each Realm have to be saved

● Private version that the creator can continue to build in after submitting
● Pending version waiting for review
● Public version that has been approved

● Public Realms mix
● 5 random popular Realms (the cutoff will change, we started with 20 likes)
● 3 random new Realms (shared in the last week)
● 2 random Realms

● Random is expensive in a large table
● We cache a larger chunk of results, page through it and refresh the cache

every few minutes

Results of Phase 2
● Thousands of Realms shared in the first month.
● About half a million public Realms visited in the

first month.
● Only about 30,000 users have visited public

Realms…

Future Plans
● Tie visiting Realms directly to your Friends
● Cater to more player types.
● Give a reason to explore that is independent of building.
● More interactive props
● More interactive animals
● Multi-user Realms
● Tie island gameplay to Realms

Vague General Takeaway

● Our answers are specific to our problem… and that is the
most important takeaway.
● Look at your user base and your product.
● Make sure that the answers you find fit them and not you,
your development team or your company.

Substantive Takeaway
● Building a progression system that is tied to gameplay is
critical and hard: it should be part of your design from the
beginning.
● Look at the level of complexity of your solutions and make
sure they match your audience. What works for you as a 35
year old game developer may not be what a 6 year old wants
or needs to enjoy your game.
● When adding to an existing game make sure your additions
complement what is already loved about your game.

Substantive Takeaway
● Limit the amount you alter your game in with each addition
and assess how it is received. Change direction if needed. The
first iterations of PopLabs were vastly different than the final
Realms release.
● Be prepared for failure. We limited the resources dedicated
to Realms (a mostly dedicated team of 4 out of 40 or so
developers) so that our other game development could move
forward and the game would not fail if Realms was not a
success.

Substantive Takeaway
● Be prepared for success. Our hardware resources are very
limited, and though we did everything we could to minimize
additional load, we could not know how our servers would hold
up to real usage patterns. We mitigated the risk by launching
only to members and observing the load they incurred,
extending sharing only to members, and caching our
expensive queries.

Substantive Takeaway
● Just because you ‘can’ put an ad there doesn‘t mean you
‘should.’ Consider your user’s experience and the long term
health of your game and brand.
● Evolve your technology. If the technical response to a
proposed feature is ‘We can’t do that with our technology,’
investigate expanding your tool set. Our back end was
unsuited to managing a huge set or user files but using
Amazon S3 turned out to be painless… well mostly painless.
● Improvise, iterate, but have a design

Substantive Takeaway
● Design the tools you will need to use for management of your
new features. We didn’t and I have spent a lot of time ‘fixing’
things for users that write into customer service. That could
have been avoided by taking the time to update the user
management tools that our CS reps would need before they
needed them!

Substantive Takeaway
● Build in metrics! Within minutes of launching I began to
receive requests for metrics. We built a high volume
aggregate metrics system that works off of parsing the server
logs, and also designed our production databases to allow ad
hoc queries. Having user data available through a data
warehouse is also highly recommended; there are just some
things that you can’t ask a 500,000,000 row production table
without setting fire to the server.
● Have a cross check on your metrics; when your code meets
reality it may do strange things including messing with
metrics.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Wait, what's a Poptropica?
	Slide Number 5
	So, it's cool, but is it BIG?!?
	Slide Number 7
	How could this happen?!?
	Slide Number 9
	At what cost?
	Slide Number 11
	Goals�Realms was created to give the players :
	Slide Number 13
	Challenges
	Slide Number 15
	More Challenges
	Slide Number 17
	Design:
	Slide Number 19
	Monetization
	Slide Number 21
	Technology:
	Slide Number 23
	Technology Challenges
	Slide Number 25
	Issues of Scale
	Slide Number 27
	Technical Success!
	Slide Number 29
	Pitfalls: Learning Curve
	Slide Number 31
	Pitfalls: Monetization
	Slide Number 33
	Pitfalls: General Design
	Slide Number 35
	Pitfalls: Limited Features�
	Slide Number 37
	Outcome: Time on site
	Slide Number 39
	Outcome: Metrics
	Slide Number 41
	Phase 2: Sharing Your Realms!
	Slide Number 43
	Goal: �Allow users to share their creations with other players.
	Slide Number 45
	Implementation:��
	Slide Number 47
	Results of Phase 2
	Slide Number 49
	Future Plans
	Slide Number 51
	Vague General Takeaway
	Slide Number 53
	Substantive Takeaway
	Slide Number 55
	Substantive Takeaway
	Slide Number 57
	Substantive Takeaway
	Slide Number 59
	Substantive Takeaway
	Slide Number 61
	Substantive Takeaway
	Slide Number 63
	Substantive Takeaway
	Slide Number 65
	Slide Number 66

