
License an Engine 
Or Create Your Own?

Dietmar Hauser
Head of Console Technology
Sproing Interactive Media GmbH



Some Background…

• Located in Vienna, Austria

• ~90 employees

• Multiple parallel projects

• Independent since 2001

• All platforms, all genres

• Proprietary engine…

…not always used



Athena 2

• 100% native, C++

• Modular and portable

• Augmented by middleware

• Improved gradually

• Slim dedicated budget



What are the others doing?

No right way: almost 50:50 split

Source: Developer Economics | State of the Developer Nation Q3 2014



Part 1: Strategy

• Investment vs. cost

• License fee vs. development effort

• Hiring vs. training experts

• Flexibility vs. stability

• Switching engine kills investments!

• Especially during a project



Engines are a safe bet, right?

• Very successful in the early 2000’s

• Esp. on PS2: GTA3, Burnout, …

• Owned by Canon, bought by EA in 2004

• Sales stopped, support & updates decayed



What about Unreal?

• Highly respected developer

• 2012: Tencent buys 48.4% 

• Unreal business model changes

• Some key people leave

• Tencent is very big

• Expands aggressively

• Knows of all Unreal powered games



What about Unity3D?

• Dominates mobile 3D games

• Excellent marketing efforts

• Entirely investment funded

• Undisclosed amount in 2014

• Constant buy-out rumors

• Cloud services tighten dependency



Sproing’s middleware criteria

• Shopping list

• Fixed or predictable costs

• Source code access

• Premium support option

• Hookable syscalls

• Esp. dynamic memory



Part 2: Maintenance

Project 
Finished

Post 
Mortem

Sufficient
Improve

Lacking
Reboot



Revolution

• A complete Athena rewrite

• To get a clean slate for teh future™

• Rewrite is isolated, ambitious project

• Added new platforms, dropped old ones

• Focus on breadth and not depth

• Great loss of practical functionality

• Half finished features continue to haunt us



Evolution

• Lessons learned

• Develop framework + game in sync

• Focus on incremental updates

• Isolate critical changes with branches

• Allow parallel systems

• Refactoring is extremely dangerous!

• Very appealing

• Often turns into “refucktoring”



Should have used an engine!

• Different approach, same problems

• Decisions are outsourced

• Support for old versions decays

• No good upgrade path to new versions

• Customizations and knowledge are lost

• Functionality is often also lost

• Subtle changes cause maintenance effort

• Tough to add new platforms to old projects



Proficiency growth (idealized)

Proficiency

Time



What does this mean?

• Software engineering is hard!

• The bigger the change, the harder the fall

• Outsourced problems are still problems

Choose wisely:

• Revolution: Fast, but dangerous

• Evolution: Slow, but controlled



Part 3: Tools

• Make making games possible

• The target of your investment

• Come in all shapes and forms

• Expensive

• Vital

• But…



Every Tool Sucks!

• They are too hard to use

• Don’t do what’s expected

• Cause frustration

• Decrease productivity

• …until they don’t anymore



“Possible Tools Space”

Ease Of Use

Specialization

Reality

Imagination



What does this mean?

• “Marketing” is key for tools acceptance

• Needs to reflect reality

• Needs to engage users emotionally

• Both help over the initial hurdle

• Tools vendors do this, often unintentional

• Unity3D does it best

• In house development (usually) worst



Conclusions

• Find your strategy

• Pick tools that fit it

• Stick with it

• Gradually improve

• Manage expectations

• If all fails, reboot



Contact Information

dietmar.hauser@sproing.com

@Rattenhirn

https://www.sproing.com

https://fb.me/sproing

@SproingGames

https://www.sproing.com/
https://fb.me/sproing

