

SUPERCHARGED!

Vehicle Physics in Skylanders

Patrick Donnelly & Jan-Erik Steel

Senior Software Engineers Vicarious Visions

SKYLANDERS

SKYLANDERS

SKYLANDERS

• Prototypes

- Prototypes
- Our Pillars
 - Examples

- *Prototypes*
- Our Pillars
 - Examples
- Technical Deep Dive

I AM A VEHICLE!

I AM A VEHICLE!

 IFGRIP
 I = IFSUSPI·KGRIP

 FWHEEL = FACCEL + FBRAKE + FSIDE

 FTOTAL = FWHEEL.

 Min (IFGRIP | , |FWHEELI)

 FTOTAL = FWHEEL.

 FTOTAL = FWHEEL.

 IFWHEEL |

• Force/acceleration are essentially magic numbers

- Force/acceleration are essentially magic numbers
- Easy to make vehicles unstable

- Force/acceleration are essentially magic numbers
- Easy to make vehicles unstable
- Difficult to make vehicle feel unique

CHARACTER VEHICLES

CHARACTER VEHICLES

• Leverage our robust character pipeline

CHARACTER VEHICLES

- Leverage our robust character pipeline
- Move away from physically accurate simulation
- State machine driven motion
- Animation layering to recapture physical motion
- Simpler designer interface

MISSED THE MARK

WHAT WE LEARNED

Physics Vehicle

inertia + chaos = FUN." Handles organic terrain well Complex motion by layering forces

Character Vehicle

More control over simulation Designer Friendly: Animation layering= POWERFUL!

Physics Vehicles 2.0:

Create a system that has best of both worlds!

"Everything should be made as simple as possible, but not simpler." – Albert Einstein

"Everything should be made as simple as possible, but not simpler." – Albert Einstein

Simplify physics simulation when appropriate

"Everything should be made as simple as possible, but not simpler." – Albert Einstein

Simplify physics simulation when appropriate

Complex behavior should come from layering simple systems

"Everything should be made as simple as possible, but not simpler." – *Albert Einstein*

Simplify physics simulation when appropriate

Parameters should be translated into designer language

Complex behavior should come from layering simple systems

"Everything should be made as simple as possible, but not simpler." – *Albert Einstein*

Simplify physics simulation when appropriate

Parameters should be translated into designer language

Complex behavior should come from layering simple systems

Keep parameters independent

ACCELERATING TO TOP SPEED

ACCELERATING TO TOP SPEED

REDUCING COMPLEXITY

BUOYANCY

MODELING BUOYANCY

Buoyancy: A fluid exerts a 'buoyant' force on an object wholly or partially submerged, and the magnitude of that force is equal to the weight of the fluid that is displaced
SIMPLIFIED BUOYANCY MODEL

SIMPLIFIED BUOYANCY MODEL

BUOYANCY

BUOYANCY RESTING HEIGHT

LAYERED COMPLEXITY THROUGH ANIMATION

TECHNICAL DEEP DIVE

SUSPENSION

15

SUSPENSION

SHAPE CAST

SHAPE CAST

mTimeToProcess += deltaFrameTime totalSubStepTime = 0.0f travelDistance = 0.0f while (mTimeToProcess >= subStepFixedDeltaTime)

mTimeToProcess += deltaFrameTime totalSubStepTime = 0.0f travelDistance = 0.0f while (mTimeToProcess >= subStepFixedDeltaTime)

mTimeToProcess += deltaFrameTime totalSubStepTime = 0.0f travelDistance = 0.0f while (mTimeToProcess >= subStepFixedDeltaTime)

mTimeToProcess += deltaFrameTime totalSubStepTime = 0.0f travelDistance = 0.0f while (mTimeToProcess >= subStepFixedDeltaTime)

Goal: **Fun** vehicle physics for a young, novice demographic Game for kids: expect them to crash into things Flexible one-stop shop for all collision responses involving vehicles

• Had to work for all vehicle types

Data driven

Rule based

• Set of criteria

- Set of criteria
- Priority

- Set of criteria
- Priority
- Must involve a vehicle

- Set of criteria
- Priority
- Must involve a vehicle
- Scoped

- Set of criteria
- Priority
- Must involve a vehicle
- Scoped
- Bi-directional

- Set of criteria
- Priority
- Must involve a vehicle
- Scoped
- Bi-directional
- Response

Phase 1: Mid-simulation

- Limited
- Predictive

Phase 1: Mid-simulation

- Limited
- Predictive

Phase 2: Post-solve

- Unlimited
- Reactive

Phase 1: Mid-simulation

- Limited
- Predictive
- Best match per contact

Phase 2: Post-solve

- Unlimited
- Reactive

Phase 1: Mid-simulation

- Limited
- Predictive
- Best match per contact

Phase 2: Post-solve

- Unlimited
- Reactive
- Best match between body pairs

TARGET

Criteria

Reaction

Reaction

	SOURCE	TARGET
Criteria	Is Vehicle = True	
	Min Speed = 20%	
Reaction		

	SOURCE	TARGET
Criteria	Is Vehicle = True	
	Min Speed = 20%	
Reaction	Ignore Collision	

	SOURCE	TARGET
Criteria	Is Vehicle = True	
	Min Speed = 20%	
Reaction	Ignore Collision	Apply Damage

Be prepared for complexity

• Layering rules is hard

Be prepared for complexity

• Layering rules is hard

Flexibility is key

- Scope of rules
- Criteria and response capabilities

PREDICTIVE LANDING

PREDICTIVE LANDING

PREDICTIVE LANDING

CONCLUSION

QUESTIONS?

Contact Info: Jan-Erik: <u>jsteel@vvisions.com</u> Patrick: <u>pdonnelly@vvisions.com</u>

'JERK Face"

Thanks to Scott Moore for lending his artistic talents to this talk, Chris Butcher for mentoring us and the team at VV for making all this possible.