
Indie DevOps and Analytics
Building big games with tiny teams.

John Bergman
Founder, CEO – Guild Software

Who Am I?

● Used to build Big ISP Networks, Services.

● Started Guild Software circa 1998.

● Personally implemented most of the
services I’m discussing today.

Who are We?

● Vendetta Online ships weekly updates
across 5 major platforms.

● Yearly game-available target of
99.95%

● MMORPG has been online since 2002.

● Proprietary 3D and client/server
engine.

● Four-person dev team.

So, you have a tiny Dev Team?

 Cost vs Time

Types of Costs: Up-front vs Recurring

● Up-front sucks immediately.

● Recurring sucks.. FOREVER.

Minimizing both Time and Cost

● If someone else will reliably manage the
problem for free.. Let them!

● (But be aware of any long-term tradeoffs).

● Reduces recurring maintenance time,
security headaches, etc.

Free, Low-Cost Service Examples:

● Company Email - Gmail

● Bulk Email - Amazon SES, Sendy, Mandrill

● Monitoring/Webhooks - UptimeRobot, StatusCake

● Client Metrics - Flurry, Google Analytics, etc.

● Server Metrics - New Relic, NodeQuery, etc.

● DNS (hosting) - CloudFlare, Hurricane Electric

● DNS (GeoIP) - Rage4, NSOne, etc.

● CDN - CloudFlare, KeyCDN, MaxCDN

Minimizing Cost

● When outsourcing is too
costly, DIY starts to look a lot
better.

● But, always be aware of the
recurring maintenance
time-vs-cost tradeoff.

Server
Infrastructure

Indie Server Scale Challenges

● Many F2P games require huge player bases to
be financially successful.

● Huge player bases are a scalability problem.

● “Feature” transient loads can be large: 1 million
new users per week.

Rules of Reduced Server Costs:

1. Minimize your per-node footprint (RAM, Disk,
CPU cores).

2. Building fault-tolerance into your app
architecture allows cheaper infrastructure.

3. Faster server code means more capacity per
node.

Have an Optimization Plan

● Plan for compiled libs, JITs, something..?

● Keep in mind, C++ is ~600x faster than Ruby.

● See “Computer Language Benchmarks Game”

● Capacity test for rough ideas of scalability.

Other Server Tradeoffs

● 32bit vs 64bit OS with VO: 40% ram
savings, 10% CPU hit.

● FYI: Garbage Collecting VMs can blow up
on long runtimes.

The Cloud

Cloud Competition is Intense

Type I - Largest Infrastructure

Type II – Enterprise Focus

Type III – Public and Dev focus

Type IV – Mystery VPS Providers
(Riskier, but can sometimes be decent).

TANSTAAFL

● Type I has great features. Amazon
DynamoDB, Route53, ElastiCache, etc.

● Type II has more Managed options
for services.

● Type III is inexpensive, but more DIY
oriented.

DigitalOcean vs Amazon

● Amazon bandwidth costs 4X more.

● DO disk IO is ~4X faster (average).

● Amazon CPU/IO may be more consistent.

● DigitalOcean CPUs are just as fast in
small instances as in large ones.

Ten Node Cost Comparison:
40 CPUs, ~80GB of ram, 800GB SSD, 10TB xfer

Amazon, c4.xlarge

● OnDemand: $1500/mo

● EBS 800GB SSD: $80/mo

● 10TB $0.09/GB: $921/mo

● Total: $2501/mo

DigitalOcean, 8GB/4cpu

● OnDemand: $800/mo

● SSD Disk: included

● 5TB included, +$102*
● *(DO doesn’t actually charge)

● Total: $902/mo
● *($800 current actual)

Virtualization Tradeoffs

● Xen may exhibit timing instability (PLL).

● OpenVZ is Linux-only, “burstable ram”
options, no kernel tweaks. Ram-efficient.

● VMWare has cool features, but can’t
monitor Steal Time.

● KVM allows kernel tweaking, zRam, etc.

Providers by Hypervisor Type

● Xen - AWS, Linode, RackSpace, SoftLayer

● KVM - Google Compute, DO, Vultr,

 Altantic.net, RamNode

● Hyper-V - Azure, SoftLayer

● VMWare - ServerCentral, SoftLayer, Aruba

● OpenVZ - RamNode

Monitoring “Steal” Time

● “Steal” CPU time on KVM, OVZ, Xen:
neighbors causing processes to wait.

● Netflix 2011: Dump the node and re-
create.

Small 4% CPU spike in Steal

Monitoring “IOwait” Time

● IOwait (all hypervisors): degree to which
processes are stalled on disk IO.

● May trigger from bad neigbors, backups,
hypervisor bugs.

IOwait Example

● Cross-cluster IO
stall.

● Stalled game for
1.5 minutes.

● Resulted in game
outage.

● Drove peak load
to ~5.5.

IOwait: Async Logging

● Don’t do classic “printf to file” logging in
the cloud.

● IO-stalls will block your entire process.

● Instead, use syslog, or other async
option.

Don’t be a dick

● Target less than 50% CPU
usage per node.

● Some providers will knock you
off for over-use of CPU, I/O.

The Cloud Is Finite

Cloudburst Capacity:
What other providers are nearby?

Multiple Providers?
Choose a Widely
Available OS variant.

Low-Cost Dedicated Hardware

● Kimsufi (OVH) – Xeon 8c, 16GB ECC,
100Mbp unmetered: $28/month.

● Scaleway – ARM 4c, 2GB ram, 50GB
SSD, 200Mbp unmetered: €2.99/month.

● (100Mbp = ~32TB/month)
● 32TB/month is $2785 from Amazon

● But.. limited location options, etc.

Colocation can be Cheaper

● A full cabinet in the US is ~$1500/mo.

● Unmetered bandwidth by the gigabit is
~$1/meg ($0.003/GB/mo. US, major network point).

● Cheap off-lease cloud servers on Ebay.

● Hardware can be a big hassle. But
possible option at scale.

Case Study:
Vendetta Online Patch Distribution.

Proprietary Delta-Patch
Server Network

● Server cluster must be:

● Globally Distributed

● Good local-region bandwidth (tiny patches per
user, but fast downloads, many users).

● Resilient to outages (network/nodes/service).

● Inexpensive!

Geo-Distribution Options

● Anycast: the “Right Way”, but requires a big
network and AS for BGP route advertisements.
Used internally by Google, etc.

● Amazon Route53 LBR allocates by relative
latency to an AWS DC.

● GeoIP: the “Cheap Way”, works well with
caveats. Used by Wikipedia, Akamai, many
others.

VO “PatchStorm” Cluster

● Network of virtual nodes in US, Europe, Asia.

● GeoIP through Anycast DNS provider (Rage4).

● Client-side failover to backup cluster in ~5
seconds.

● Server status monitored by UptimeRobot

● Server-side down-node removal within ~600
seconds.

Resulting Performance

● Excellent localized proprietary TCP service in
many regions (easily expanded).

● Many GB per day pushed at locally-fast speeds,
minimal cost.

● Only took a few days to initially set up.

● Very fault tolerant: Node stability less critical.

Resulting Network

● UptimeRobot monitoring: Free!

● Number of Servers: 12

● Included Monthly Bandwidth: ~15TB

● Separate Domain: $15/year

● Rage4 usage: ~$2/month

● Total Cost: ~$18/month

● Rough AWS Equiv: ~$250 to $1300/month

“Gotcha” notes

● Weird routing: Miami may be faster to Brazil than.. Brazil.

● Different VPS providers have various bandwidth overage
policies. Read fine print.

● Large public DNS providers (Google, 8.8.8.8) may share
cache across regions, breaking GeoIP for those users. In
practice: not a significant issue.

● Professional CDN is probably easier/better for pure
downloads, but not proprietary service.

Other Options

● Host GeoDNS yourself: PowerDNS, GeoIP
back-end, rsync free MaxMind database
weekly (what Wikipedia does).

● But, recurring time-cost not worth it.

Alternative Services

● The same fundamental architecture
could probably serve many
asynchronous games with GeoIP
locality/performance.

Server Automation

Thou Shalt

● Automate Everything

● Monitor, Measure and
Record Everything

● Alarm Everything

Automation..

● Is critical for small teams.

● Reduces administrative errors.

● Is necessary to let you scale quickly and
elastically.

Which Automation?

● Salt vs Ansible vs Puppet vs Chef

● Google uses Puppet, Yahoo uses Chef

● Puppet and Chef have more setup
complexity to help large environments.

● Salt and Ansible are both simple and
lightweight.

Ansible and Salt

● Ansible only requires SSH access (cool).

● Salt is another connection, but very fast.

● Salt-ssh replicates ssh-only automation.

● Upshot: Preferred the activity of the Salt
community, and usage of Python.

● Use what you like?

Salt-Cloud

● Cross-API elastic node management in the
cloud.

● Inherently speaks to AWS, RackSpace,
DigitalOcean, Linode, others.

● Not hard to configure for other APIs.

● Not as full-featured as individual provider tools,
but cross-platform.

Easy to add

● Salt only took a couple of days to learn.

● Fast to integrate new nodes.

● Secure: key-auth, AES on transport.

● Mixed with other tools (rsync), super
helpful.

● Easy to script, program, etc.

Implementation Notes

● Differentiate and group server/node naming
conventions by maintenance usage.

● Could be by service-type, or geography (DC),
whatever is likely to be referenced.

● Shell-style globbing is used. ‘host*’ or

 ‘host[1-5]’ or ‘host[1,5]’, etc.

● We firewall the salt master. YMMV.

Obvious Example is Obvious

● Update an ipv4 firewall across all “core”
servers:

salt-cp ‘core*' rules.v4 /etc/iptables

salt ‘core*' cmd.run 'iptables-restore <

/etc/iptables/rules.v4'

Automation, Releasing and
Reverting

Docker: Dependency Sanity

● Package up your entire server app, binaries, and
all dependencies into a single image.

● Distribute and run that package anywhere,
identically, without virtualization overhead.

● Roll an updated image for each release.

● Revert with absolute certainty.

● Very elastically friendly. Easy to spin up dev
nodes.

Docker: Caveats

● Image size may directly impact
distribution time and elastic startup
delay.

● A repository can be run locally in a DC

● Or I/O intensive data could be acquired
via other channels.

● 64bit Only at present.

Docker: Try services easily

● There is an existing Docker image for a
great many services. Ready to roll.

● Don’t want to configure Graphite,
Apache, Statsd, Grafana, to all play
together..?

● Install a Docker image in one command.

Automated Client Testing

● Very helpful, but not a panacea.

● Open-source frameworks: Appium,
Calabash, etc.

● Cloud-based devices: TestDroid,
Xamarin, AWS Device Farm, $0.17/min.

Monitoring, Analytics

Monitoring, Stress-Testing

● Build a headless test-client!

● Use meaningful player behaviour to
test/alarm “server-online” status.

● Re-use the same test-client to implement
a server stress-test, prior to launch.

Automated Bug Reporting

● We have crash reporting and a backtrace system
on both the clients and server.

● Makes reaction to bugs much faster, more
accurate.

● Simplest client-side implementation:

● Write out critical data on crash.

● On startup, detect the file very early.

● Submit via HTTPS on next runtime.

Metrics & Analytics

● Absolutely critical! No excuse to not have
something.

● If you have ZERO time/budget, then:

● Implement Flurry on the client-side.

● New Relic for server monitoring.

● Completely free, to any scale, with good basic
data.

Out-Sourced Analytics: Benefits

● Many options: Localytics, Mixpanel, New Relic,
etc.

● Near-zero upfront cost (time or money), should
“just work”.

● Lots of intelligent defaults for common cases.

● “Free” usage tiers of meaningful scale.

Out-Sourced Analytics: Flipside

● Configured for common-case, not “You”.

● Varying degrees of flexibility.

● Anything custom can be expensive.

● Data resolution can be poor (or expensive).

● High usage loads can become costly.

● Third-party SDK/library may break your app.

For Example..

● Metrics via Mixpanel: 20 million data points per
month, $2000/month.

● Vendetta Online server cloud: 260 million data
points per month. Cost: a few days of setup,
42kbits of bandwidth, 350MB of disk space.

● BUT, not a 1:1 comparison!

Graphite is Awesome!

● Zero setup time for new metrics.

● Graphing detached from storage (Carbon).

● Many third-party front-ends.

● Easy to tie in log aggregation, data-mining.

● Monitoring/Alarms on time/series data changes.

● Lots of integrated math functions, etc.

Carbon stores Data

● "Whisper" time/series database.

● Fixed size, determined by aggregation type.

● Aggregation chosen by regex match, on metric
initialization.

● Data precision can be as high as per-second,
useful for server profiling.

● Average/Sum/Last/Min/Max options for
aggregation.

Creating a Metric is Trivial

● Any metric can be generated by sending this, to

a carbon server:

<metric path> <metric value> <metric timestamp>

Server Storage Aggregation

● Server data: A reasonable picture of recent
activity, 46kB of disk per metric. BUT, there
may be many metrics. Roughly 320 per server,
or ~15MB:

[servers]

pattern = ^servers.*

retentions = 60s:4h,5m:2d,30m:1w,2h:30d,4h:90d,1d:5y

Revenue Storage Aggregation

● Revenue data, summed and not averaged, kept
at higher accuracy. 112kB per metric:

[revenue]

pattern = ^revenue.*

retentions = 5m:14d,30m:4w,2h:90d,4h:180d,1d:5y

Doing this:

echo "servers.vo-sc.`hostname`.sd.totalmemory" `ps -axm |

grep "\.\/bin\/sd" | sed "1 d" | awk '{print $9 * 1024}'

| paste -sd+ - | bc` `date +%s` | nc -q5

redacted.hostname.com 2003;

Sends this output:

servers.vo-sc.voc11.sd.totalmemory 111009792 1445666511

And results in:

Graphite Renders Carbon data

● Can be hosted separately from Carbon.

● Default front-end, graphing, dashboard.

● Stores graph-config data in sqlite (read-side
scale issue for some).

● Far better third-party options, Grafana uses
d3.js and lets you zoom/scale data in realtime.

Grafana Example

Data is easily zoomed, scaled, measured.

Combine Metrics Arbitrarily

● Cross-combine and mix any metric, or metrics,
with any others.

● For instance, even simple dashboards..

Active Players – By Faction

Active Players – By Platform

Active Players – By Monetization

Aggregating Cluster Data

● Rapidly get a picture of combined “server
weather” status.

5-min Load, Averaged per DC

Summed Ram usage across a DC

Correlate Disconnected Data

● Blend data from related, but disconnected
inputs to gain insights.

● Separate Y-axes (left vs right) allow
unique scales.

Process Count vs RAM footprint

Easily profile rapid changes.

● Server was exhibiting sporadic disk IO
latency spikes.

● A simple script, with “ioping” greatly
helped analysis.

Simple Script, results in..

#!/bin/sh

while [1]

do

 date=`date +%s`

 echo "pulse.office.`hostname`.ioping.10second.max" `ioping -c 1 -q -p 1 . | \

 awk '{ print $2 }'` "$date" | nc -q 600 redacted.hostname.com 2003 &

 sleep 10

done

Elastic? Construct on the fly.

● All graphs are simple URLs with parameters (or
csv/json/etc).

● Trivial to add and remove elastic nodes.

● Graph by percentage-of-total instead of summed
aggregate, etc.

Combined Game Metrics

● We record a lot of metrics per player.

● Thus, we can later combine them to get..

● Monetization of AppleTV vs AndroidTV vs Xbox users.

● Percentage of VR players who use gamepad vs
mouse/keyboard.

● PvP success of mobile vs PC players.

● Whatever else we can imagine, and record.

DrawAsInfinite

● Allows a vertical line to be set at a specific time.

● Helps correlate non-numerical events. Ie:

● See spike in item sales vs an item stat change.

● Players online with start/end value of a major guild
event.

● Instances of opened support tickets vs recorded
latency.

System Monitoring

● Diamond: Effective, "pickled" protocol, but big
ram footprint (Python).

● CollectD: Also effective, very fast, low ram
overhead.

● Diamond: ~40MB resident, CollectD ~5MB
resident.

● Various other options out there, graphite being
popular.

CollectD Specifics

● Avoid installing kitchen sink: collectd-core is
probably enough.

● Plugin options like "tail" and "exec" offer
customization.

● "Aggregation" plugin is convenient for many-
core systems, etc.

IOwait Example.. Again!

● Remember this?

● Wrong cause was
initially
suspected.

● Graph drastically
narrowed
debugging scope.

● Huge time-save.

● Aggregation
simplifies output.

Monitoring Metrics

● Deltas and Thresholds can be monitored
and alarmed.

● Alarms could notify of any trend, even an
increase in revenue:

Monitoring / Alarm Solutions

● Cabot provides means of triggering by delta,
etc.

● graphite-beacon: simple python script for
alerts by data queries into carbon.

● Possible: Skyline (Etsy), AnomalyDetection
(Twitter), Anomalizer, modified Monit, etc.

● Fire off email, or hit an SMS gateway, etc.

Recording Client Metrics

● Graphite can be used end-to-end, receiving
any data from clients just as easily (scale
challenges apply).

● Client performance metrics are useful: Time
from App-start to “Fun”. What takes the most
time?

● Stacked graph of startup, DNS resolution, patch
processing, texture loading, etc.

Scaling with Carbon Relay

● Aggregates
Connections

● Buffers to RAM or Disk

Carbon-Relay Alternatives

● BackStop: Relays from JSON via HTTP POST to
Carbon.

● Carbon-c-relay: Compiled C, fast with back-
end failover.

● Carbon-relay-ng: Compiled C, upwards of a
million metrics / second.

● And still more..

Log Data Tailing

● Syslog-ng, Logster, CollectD all have
integrated Graphite/Carbon support.

● Tail logs, automatically return metric data that
appears.

● Add new "metrics" with an additional log-
tail/regex.

More Complex Options

● MANY ways to do things: Uber vs Etsy vs
Instagram, etc.

● Statsd solutions can send data to Databases,
other than Carbon.

● Ganglia, ElasticSearch, other solutions can
wire in to augment Graphite, log aggregation,
data-diving.

What We Do

● "Server/OS" metrics reported independently by
CollectD.

● "Game" metrics aggregated and reported by
Erlang subsystem (“estatsd”).

● All fire metrics into carbon-relay for each DC,
pickled/aggregated back to core metric server.

Conclusion

Game Server Performance drives
scalability and costs.

Automate control of your clusters, at
any elastic scale.

Server Update and Revert/Rollback
should be simple, foolproof, free of

dependency issues.

Measure, Monitor and Alarm
Everything!

Awareness of recent history shines a
spotlight on problems, saving huge

debugging time, and downtime.

Questions?

● I will attempt to answer questions, and may just
ramble aimlessly.

● Contact me, for electronic rambling!

john@guildsoftware.com

