
Automating Data
Implementation With IDs
Keir Miron
Programmer on Darkest Dungeon
@KeirMiron
business@keirmiron.com

Contents
● Syntax
● Generating Using IDs
● Referencing IDs
● File System Hierarchy
● Linking Code Data to File Data
● Automatically Generating Data

Intro
● Darkest Dungeon

● Turn-based RPG, Procedural
● Windows/Mac/Linux/Ps4/Vita
● 2-person programming team
● C++ 11 custom engine and middleware

Syntax
● A Class object

● Contains data that never changes
● Jester Hero Class

● All Jesters have a max hp of 35
● All Jesters can have a skill “inspiring_tune”
● The Jester skill “battle_ballad” is ranged

Syntax
●String Format

The code to print “string_named_test”
●string.format(“string_named_%s”, “test”)
●print(string)

will be shortened to
●string_named_[name]
●string_named_test

Generating Using IDs
● When an ID is missing:

● “FMOD: Could not find ID for event
'[audio_event_id]’”

● When an object with an ID is referencing a
missing ID:
● “No effect of name [effect_id] so not

adding to skill [skill_id]”

Generating Using IDs
● Using string formats, you can dynamically insert

IDs into file paths
● When new IDs are created the file paths are

automatically generated
● Identify missing files with error messages or

temporary assets

Generating Using IDs
● File paths in the same folder

● resistance\resistance_icon_[resistance_id].png
● resistance\resistance_icon_bleed.png
● resistance\resistance_icon_move.png

Generating Using IDs
● File paths separated into different folders

based on IDs:
[item_type]\inv_[item_type]+[item_id].png
 trinket \inv_trinket+lucky_dice.png

 gem\inv_gem+ruby.png

Generating Using IDs
● Multiple file paths with one ID

● [hero_class]\[hero_class].art.darkest and
[hero_class]\[hero_class].info.darkest

● leper\leper.art.darkest and leper\leper.info.
darkest

● jester\jester.art.darkest and jester\jester.info.
darkest

Reference IDs Inside of Files
● Share logic between Classes

Trinket ClassesBuff Class

Reference IDs Inside of Files
● Reuse data from other definitions

Reference IDs Inside of Files
● Generate multiple types of classes

● When parsing one Class you can generate
another Class
● Example:
● All trinkets are items
● For every trinket class we generate an item Class
● Generated item Classes are of type of trinket and the

same ID as the trinket class

Filesystem Hierarchy
● Filesystem hierarchy can be used to

create your IDs when parsing your file
system

Filesystem Hierarchy
● Example: Every folder in data/heroes is a

hero class ID, and every folder in
data/monsters is a monster Class ID

Filesystem Hierarchy
● We used regular expression-based file

searches to get all files in a given folder
● The folders:

● data\monsters\bloated_corpse\
● data\monsters\swinetaur\
● data\monsters\unclean_giant\

● Became monster IDs:
● bloated_corpse, swinetaur, unclean_giant

Linking Code Data to File Data
● Uses preprocessor macros and enums
● Links the declaration of enums to IDs
● Enums can be used in code
● IDs can be used for parsing data files

and generating paths

Linking Code Data to File Data
● Unlinked

● eNumber and k_NumberIds
have to be kept the same size

● eNumber and k_NumberIds can
have spelling inconsistencies

● Spelling errors are not caught at
compile time

Linking Code Data to File Data
● Linked

● When types are added to
NUMBER_TYPES_DECLARE
● new enum elements are created
● new IDs are created
● spelling is consistent between

eNumber and k_NumberIds
● Spelling errors are caught at

compile time

Linking Code Data to File Data
● Multiple constants can be linked to an enum

Linking Code Data to File Data
● Constants can be accessed by enum input functions

Automatically Generating Data
● Save/Load is JSON based
● Analytics data is JSON based
● Parsing consists of going through an

enum and using the linked IDs as keys in
JSON dictionaries

Automatically Generating Data

Automatically Generating Data

Outro
● Thanks to

● Red Hook Studios
● Power Up Audio
● Pierre Tardif and Kelvin McDowell

● Contact
● @KeirMiron
● business@keirmiron.com

