

- Creating Realistic Quadruped Locomotion

Tobias Karlsson Principal Software Engineer, Microsoft

Background

- Project Fang
 - Virtual Pet

Background

- Project Fang
 - Virtual Pet
 - For Microsoft HoloLens
 - This talk is not HoloLens
 specific

Overview

- Quadruped locomotion
 - Using mostly common techniques
 - Should fit well within the CPU budget of any application

Overview, cont'd

- The Algorithm
 - Generate a smooth, realistic path to follow
 - Use a mix of procedural and caned animations to create realistic looking motion
- Various tips and tricks

Pathfinding Size

 Use a pathfinding radius equal to half the dog's shoulder width

Pathfinding Size, cont'd

Pathfinding Size, cont'd

Turn limitations

- No limitation on turning
 - Smoothing removes sharp corners
 - Dog can turn around any real world corner

The Pathfinding Data

The Pathfinding Data

- A simplified representation is created from the raw data
 - Nodes with positions and a radius
 - A minimal tree connecting the nodes

Path Generation

- Create rough path using A*
- Optimize path using string pulling

Better Path Generation

- Subdivide the path
- Smooth the path

Smoothing

- Uses a physics based model of connected springs
 - Torsion springs and linear springs
 - A technique used for creating racing lines

Smoothing Problems

- Springs worked great most of the time
 - Occasionally produced paths with kinks and knots in them.
 - Required a very large number of iterations for extreme cases

Smoothing Solutions

- Think of smoothing as an optimization problem
 - There are many algorithms for solving optimization problems

Faster Smoothing

- Chambolle-Pock
 - First-order primal-dual algorithm
- An order of magnitude more effective
 - Two passes over the data per iteration
 - Works well with constraints

Chambolle-Pock

- Requires convex objective functions
 - New model for smoothing

- Minimize the distance the point has moved from its original position
 - Ensure that the smooth path doesn't deviate too far from the optimal path

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

- Minimize the square of the height of this construct
 - Roughly equivalent to minimizing the angle

Path Following

 Cannot just rotate the character like a biped

Animating the Spine

- Cannot use canned animations
 - Do not look good in transitions
- Procedurally animate the spine

Spineflex

- Bend spine so that both pairs of feet straddle the path
 - While still maintaining the root position's direction

GDC[¢]_{G4}

 Find the position on the path that is the character's spine's length from its current position

 Find angle between projected position and path direction at hip position

- Assume spine bones are of uniform length and rotate a uniform angle
 - Spine forms a polygon together with the line from spine start to spine end

The equation for how much to rotate each bone in the spine:

$$w = \frac{(540 - 2v)}{3}$$

Flexing the Head

- Lead with the head
 - Crucial for natural looking movement
 - Look ahead is speed dependent

Spineflex and Character Type

- The amount of spineflex that looks good is dependent on the kind of character
 - Easy to make the dog move like a cat

Easing In & Out of Spineflex

- Need to transition in and out of spineflex
 - To ease in
 - Turn dog's front
 - Or ease in spineflex over the start walking animation
 - To ease out
 - Turn dog's rear

Tips & Tricks

- Overview
 - Local motion
 - Animation footprints
 - Breadcrumbs and backtracking

Local Motion

- Used for very short range motion and position adjustments
 - Achieved by a blending animations of multiple movements
 - Uses a pre-computed lookup table for blend parameters

Animation Footprint Checking

- Important to know if an animation can be played
 - Test head, shoulders, and root
 - Cannot ask the animation engine
 - Has multiple uses.

Animation Footprint Checking

Breadcrumbs & Backtracking

- Need a way to get out of dead ends
 - Keep track of where the dog came from
 - Reverse along the breadcrumb path until there is enough room

Breadcrumbs & Backtracking

More Information

- The source code will be available online
 - On GitHub

More Information

- General questions:
 - Tobias Karlsson: <u>tokarlss@Microsoft.com</u>
- Chambolle-Pock:
 - Mark Langerak: <u>helanger@Microsoft.com</u>
- Local Motion:
 - Todd Heckel: <u>theckel@Microsoft.com</u>

On All Fours

- Creating Realistic Quadruped Locomotion

Tobias Karlsson **Principal Software Engineer, Microsoft**

