
Modular AI Systems
Troy Humphreys

Lead AI Programmer

Turtle Rock Studios

● Game AI architectures are pretty modular

● We used a behavior tree for the AI in Evolve

○ But the AI was still hard to get out the door

● So we set out to fix our AI system

○ Figure out why our modular system wasn’t “modular enough” and fix it

○ Without breaking our legacy characters and the systems that run them

Why this talk…

How do you fail at Modular?
Let’s start with a simple example

Forest Troll - Tree Trunk Tornado

Forest Troll - Tree Trunk Tornado
● The details!

○ Should only attempt when surrounded

○ It’s a Point blank AOE attack

○ After completion, troll is “tired”

● So we make a new node for the behavior tree

○ OnStart, it checks enough enemies close by the troll

○ Do an animated attack, play an animation, sounds, triggers damage boxes

○ On completion, sets some data on the blackboard for “tired”

● Perfectly reasonable implementation

○ But we know what comes next

Ok, we failed. Now what?

Separation of Responsibility

Sensing Deciding Acting

Is <target>
surrounded?

Behavior
Tree

Animated
AttackAA

Tired

Surrounded

Details, Guidelines and our solution

AI’s World State - the glue...
● Game State vs World State

● World State == Big Block O’ Data

● Guidelines

○ Every character should be able to have their own set

○ Keep this structure simple

● Evolve splits up this concept

○ The blackboard - enumeration of game state

○ The NEW whiteboard - rich data

Sensing
● Where data collection happens

● Guidelines

○ Modular and atomic

○ Characters should be able to have different sets of sensors.

○ Where the heavy lifting happens

○ Keep out of your deciding loop

● Evolve’s New Sensor Manager

○ Allows users to install sensors per character

○ Allows sensors to have a different stale time per character type

○ Manager burns through as many sensors it can in its allotted time

Acting
● Acting makes up the operations that the AI actually does

○ Your attacks, reloads, interactions, etc

● Guidelines

○ Operations should be agnostic to the reasons they are being done

○ Operations should be agnostic to the world state it references

○ Operations shouldn’t try to do more than one thing

○ Operations shouldn’t change your world state

● Evolve’s Acting

○ Our acting is done in our BT nodes

Deciding
● Where we make decisions

○ Behavior Systems (HTN, GOAP, BTs, FSM)

■ Kinda

● Guidelines

○ Deciding should be fast.

○ Should be able to annotate the acting components

○ Should be fast to edit.

● Evolve uses the BT described in Bill Merril’s Game AI Pro

article

○ Great article, go check it out

● Evolve uses blueprints as a way to have one location where

we can setup a character.

○ Load designer tunable data

○ Define the blackboard and install whiteboards

○ Install all the different components for our character

○ Connecting everything together

● This is how we built new AI without breaking legacy AI

Blueprints - making it all stick together

AI System Layout
Sensing Deciding Acting

World State

AI System Layout: Behavior Tree [Evolve]
Sensing Deciding Acting

World State

Sensor
Manager

SurroundedSensor

EnemyDistSensor

BTNode_Reload

BTNode_Fire

BTNode_AnimAttack

...BTNode_NavTo

Behavior Tree

BTSelector

BTSequence

BTDecorator

Blackboard Whiteboard

AI System Layout: HTN Planner
Sensing Deciding Acting

World State

Sensor
Manager

SurroundedSensor

EnemyDistSensor

Operator_Reload

Operator_Fire

Operator_AnimAttack

...Operator_NavTo

HTN Domain

Compound Tasks

Primitive Tasks

WorldState Whiteboard

AI System Layout: FSM
Sensing Deciding Acting

World State

Operator_Reload

Operator_Fire

Operator_AnimAttack

...Operator_NavTo

Blackboard Whiteboard

FSM
S:IsSurrounded

S:EnemyDistance

FSM
S:NavToEnemy

S:TrunkTornado

S:ThreatenEnemy

● Modular system != Modular Characters

● Think in terms of responsibilities

● Make it easy for programmers to do the right work in the

right place

● You can do it!

In Conclusion

Thanks!
● Kevin and Chris for all their help!

● Justin Cherry for the awesome troll art!

● TRS AI team!

● Past AI teams

And my wife Liz, for listening to this talk over and over and over!

