
AdVenture Capitalist

Post-Mortem

(and please install AdVenture Capitalist)

Back-end building blocks
for your live game. Storage,

compute, commerce,
analytics and much, much

more.

Mission control for your
whole team. All the data

and tools you need to
engage, retain and

monetize your players.

The activity stream that ties
it all together. Events,
triggers and real-time

segmentation to automate
your live ops.

Pre-integrated tools and
services from industry-

leading partners. Reduce
SDK fatigue, with (mostly)

single-click access.

• Launched May 2014 as prototype on Kongregate.com
– Hit “Most Played Game” on Kong in 2014

– Currently, 2nd Most Played All-Time

– Launched on Android, iOS, and Steam in Q1 2015

– 15+ Platform “New + Updated” Features

• 17 million installs

• 65% Lifetime D1 Retention

• 4.5 Average Lifetime Rating on All Platforms

• 1 Billion+ Sessions

• 100 million+ Ads Served

• 1 quadragintillion lemons squeezed

• Combat fraud

• In-app purchase testing

• Faster content updates
PlayFab added as backend platform

• We’re not a backend company, we’re a game company

• I’m lazy

• I’m lazy

• Ready to go

• I’m lazy

• Cheaper

• Authentication

• Receipt validation (mobile)

• Steam purchasing

• Saving player profiles in the cloud for Facebook

• Facebook purchasing

• Live events

• Player notifications

• Server-based item catalog

• Flash sales

• All PlayFab calls require a user account of some type.

• We started with a "Guest" account using the mobile device id.

– Later we added Steam, Facebook, and Kongregate authentication

• User is authenticated on game start.

public void LoginAndroid(string deviceId) {

var request = new LoginWithAndroidDeviceIDRequest {

TitleId = PlayFabSettings.TitleId,

AndroidDeviceId = deviceId,

CreateAccount = true}; // Create the account if it doesn't exist

PlayFabClientAPI.LoginWithAndroidDeviceID(

request,

this.OnLoginResult,

this.OnLoginFail);

}

• From msdn.microsoft.com:
“a library to compose asynchronous and event-based programs
using observable collections and LINQ-style query operators.”

• aka: Observable/observer pattern with filtering

• UniRx is a Unity-specific implementation
https://github.com/neuecc/UniRx

https://github.com/neuecc/UniRx

Old
PlayFabClientAPI.LoginWithAndroidDeviceID(

request,
this.OnLoginResult,
this.OnLoginFail);

New
PlayFabClientAPI.LoginWithAndroidDeviceID(

request,
e => this._EventStream(new LoginEvent(e)),
err => this._EventStream(new LoginEvent(err));

public class PlayFabWrapper {
private Action<IPlayFabEvent> _EventStream = delegate { };

}

Old
playFab.EventStream += this.OnLogin;

private void OnLogin(IPlayFabEvent e) {
if (e.Success) {

// Handle Login
}

}

New
playFab.EventStream<LoginEvent>()

.Where(e => e.Success)

.Subscribe(this.OnSuccessfulLogin);

public class PlayFabWrapper {
public IObservable<T> EventStream<T>() where T : IPlayFabEvent
{

return Observable.FromEvent<IPlayFabEvent>(
h => this._EventStream += h,
h => this._EventStream -= h

).OfType<IPlayFabEvent, T>();
}

}

• Show PlayFab ID in the UI somewhere

this.EventStream<LoginResult>()
.Where(result => result.Success)
.Subscribe(result => playFab.PlayFabId.Value = result.PlayFabId);

playFab.PlayFabId.SubscribeToText(this.supportText);

• Refresh login tokens periodically

Observable.Timer(TimeSpan.FromHours(6))
.TakeUntil(this._IsLoggedIn.Skip(1))
.Subscribe(_ => {

Debug.LogWarning("Login timeout detected, logging user out");
this._IsLoggedIn.Value = false;

});

• On iOS/Android, hackers can
spoof receipts

• Can’t trust client validation

• Hard to do paid user acquisition
without more accuracy

 -

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

 200,000

fraud receipts

legit receipts

Total Fake Revenue $976,609,233

Total Fake Receipts 12,585,975

Avg. Fake Receipt $77.60

// PlayFabWrapper Class

private void ValidateReceiptAndroid(string receipt, string sig) {
var request = new ValidateGooglePlayPurchaseRequest() {

ReceiptJson = receipt,
Signature = sig};

PlayFabClientAPI.ValidateGooglePlayPurchase(
request,
_ => this._EventStream(

new RVEvent(Platform.Android, new[] {receipt, sig})),
err => this._EventStream(

new RVEvent(Platform.Android, new[] {receipt, sig}, err)));
}

// PlatformStoreAndroid class

public void Init(PlayFabWrapper playFab) {
GoogleIABManager.purchaseSucceededEvent +=

p => this._EventStream(new PurchaseCompletedEvent(p));

this.EventStream<PurchaseCompletedEvent>()
.Where(e => e.Success)
.Subscribe(e =>

playFab.ValidateReceiptAndroid(e.originalJson, e.signature));

playFab.EventStream<RVEvent>()
.Where(e => e.Success)
.Subscribe(e => this.ConsumePurchase(e[0]));

}

• Be prepared to handle unconsumed items

• When first starting out, use a test Title Id

• Steam requires a server to
initiate and complete purchases.

• PlayFab can be that server

// StartAndPayForFunction method

var request = new StartPurchaseRequest() {

Items = new List<ItemPuchaseRequest>() {

new ItemPuchaseRequest() {

ItemId = itemId,

Quantity = quantity}}};

PlayFabClientAPI.StartPurchase(

request,

result => this.PayForPurchase(result),

err => this._EventStream(new BeginPurchaseEvent(err)));

• Create a test title id in PlayFab.

• Ask PlayFab to enable Steam Sandbox mode.

• Overlay doesn’t appear until player gets request from Steam.

• Primary purpose: Launch WebGL version of our game on FB

• Saving player data on WebGL problematic, so save on PlayFab

public void LoginWithFacebook(string accessToken)
var request = new LoginWithFacebookRequest() {

AccessToken = accessToken,
CreateAccount = true,
TitleId = PlayFabSettings.TitleId

}

PlayFabClientAPI.LoginWithFacebook(
request,
e => this._EventStream(new LoginEvent(e)),
err => this._EventStream(new LoginEvent(err));

}

public void UpdateUserData(Dictionary <string, string> kvp) {
var request = new UpdateUserDataRequest() {Data = kvp};

PlayFabClientAPI.UpdateUserData(
request,
result => this._EventStream(new UpdateEvent(result),
err => this._EventStream(new UpdateEvent(err));

}

• PlayFab manages Facebook purchase system

– Generates required XML objects from our item catalogs

– Purchase initiated through PlayFab; order id sent to Facebook for payment

– On success, resulting transaction id sent to PlayFab and items are granted

• Primary purpose: increase player engagement
by releasing limited-time events

• Secondary purpose: tweak gameplay balance
and fix bugs without going through mobile cert

• Moved art/assets into Unity AssetBundle

• Moved planet config to Google Sheets

• Export data to PlayFab catalogs

var eventKey = "event-v6";

playfab.EventStream<TitleDataEvent>()
.Subscribe(this.OnDataReceived);

playfab.EventStream<UserDataEvent>()
.Subscribe(this.OnDataReceived);

playfab.EventStream<CatalogEvent>()
.Subscribe(this.OnCatalogReceived);

playfab.IsLoggedIn
.Where(i => i)
.Take(1)
.Subscribe(_ => {

playfab.GetTitleData(eventKey);
playfab.GetUserReadOnlyData(playfab.PlayFabId.Value, eventKey});

Event start
(Feb 9)

Event end
(Feb 19)

Avg. Revenue during event:
2.3x higher than normal 4-hr sale

(Feb 19)

• Approve binary before event is complete

– After approval still tweaking gameplay, adding art, fixing bugs

• Live tuning based on feedback and analytics while event running

– Acquiring angels too quickly -> reduced rate of accumulation by 3x

• Results: increase in sustained engagement and in-app spend

• Primary purpose: Notify players when a new event starts

• Secondary purpose: Notify players when a sale is on

• In-game: Use TitleNews

• Out-of-game: Use PushNotifications

• PlayFab has 1-to-1 push notification support, but
recommended partner OneSignal for bulk messages (~2.4M)

5% - 10% click-through rate for
push notifications

Logins / Second

Sale start

• Primary purpose: more
control over game economy

• Moved all in-app purchase
data into PlayFab catalogs

• New variations of items can
be created without binary
update

• Weekend discounts and flash sales on virtual
items and currency packs

• Reduced our hangover period
– Engagement and spending often drop after an event.

– This still happens, but flash sales smooth out the
hump.

How about we try
launching a sale right

now, champ?

Ev
en

t
Fi

lt
er

s

•Real-time game
operations automation

•Make decisions based
on 360 view of player

•Ties together your
game, the backend, and
3rd party services

• Sample the real-time event feed
to ensure everything is working.

• Click to inspect specific players
or events.

• View a player’s history of data
events to assist with customer
support and debugging.

• See player specific events in
real-time to monitor specific
player performance.

• Define player segments
based on properties

• Trigger actions as
players enter or exit
segments, in real-time

• Send a filtered stream
of events to any
external webhook.

• Monitor recent events.

• Failed events will retry
automatically.

