
Math for Game Programmers:
Juicing Your Cameras with Math

Squirrel Eiserloh
Indie Game Programmer / Designer
Lecturer, SMU Guildhall

A note on .GIF animations

Note: These slides are filled with animated .GIF images, which
unfortunately do not animate in this .PDF rendering.

You can download the original PowerPoint slides at:

www.EssentialMath.com/tutorial.htm

Or feel free to contact me via email (squirrel@eiserloh.net)

or Twitter (@SquirrelTweets)!

http://www.essentialmath.com/tutorial.htm
mailto:squirrel@eiserloh.net
https://twitter.com/SquirrelTweets

Overview

● Camera Shake

● Translational vs. Rotational

● Noise vs. Random

● 2D vs. 3D

Overview

● Camera Shake

● Smoothed motion

● Parametric motion*

● Asymptotic Averaging
● Asymmetric Asymptotic Averaging

whut?

Overview

● Camera Shake

● Smoothed motion

● Framing

● Points of focus

● Points of interest

● Feathering

Overview

● Camera Shake

● Smoothed motion

● Framing

● Voronoi split-screen

● Construction

● Player- vs. split-relative

● View merging

● Feathering

Overview

● Camera Shake

● Smoothed motion

● Framing

● Voronoi split-screen

● Tease and a Challenge

Juice is the new black

Juice is the new black

With great power comes
great responsibility

Camera shake is like salt

boring OMG MAKE IT STOP

Camera shake

● Maintain a “trauma” level in [0,1]

● Damage, stress adds trauma (+= 0.2 or 0.5)

● Trauma decreases (linearly) over time

● Camera shake is trauma2 or trauma3

● Why does this feel right? (spring and damper!)

● Why does this feel good? (escalations perceptible!)

Trauma .30, .60, .90 means 3%, 22%, 73% shake

(demo: Mantis trauma)

Camera shake: translational vs. rotational

In 2D:
● Rotational feels okay, but kinda lame

● Translational feels nice

● Translational + Rotational = Awesome

But what about in 3D?

(demo: Mantis rot, trans, both)

Camera shake: translational vs. rotational

In 2D:
● Rotational feels okay, but kinda lame

● Translational feels nice

● Translational + Rotational = Awesome

In 3D:
● Translational: super lame! (why?)

● Rotational: nice!

● Translational: VERY BAD (why?)

(demo: SimpleMiner trans, rot, both, BAD)

Camera shake: in VR

+ =

With great power comes
great responsibility

Camera shake: implementation

In 2D,
compute shake angle and offset:

● angle = maxAngle * shake * GetRandomFloatNegOneToOne();

● offsetX = maxOffset * shake * GetRandomFloatNegOneToOne();

● offsetY = maxOffset * shake * GetRandomFloatNegOneToOne();

then add it to the camera for that frame (preserve the base camera)

● shakyCamera.angle = camera.angle + angle;

● shakyCamera.center = camera.center + Vec2(offsetX, offsetY);

Camera shake: implementation

In 3D, same thing:
● yaw = maxYaw * shake * GetRandomFloatNegOneToOne();

● pitch = maxPitch * shake * GetRandomFloatNegOneToOne();

● roll = maxRoll * shake * GetRandomFloatNegOneToOne();

● offsetX = maxOffset * shake * GetRandomFloatNegOneToOne();

● offsetY = maxOffset * shake * GetRandomFloatNegOneToOne();

● offsetZ = maxOffset * shake * GetRandomFloatNegOneToOne();

(actually, there’s a better way... wait for it...)

Camera shake: random vs. smoothed noise

Use Perlin noise instead!
● yaw = maxYaw * shake * GetPerlinNoise(seed, time, ...);

● pitch = maxPitch * shake * GetPerlinNoise(seed+1, time, ...);

● roll = maxRoll * shake * GetPerlinNoise(seed+2, time, ...);

● offsetX = maxOfs * shake * GetPerlinNoise(seed+3, time, ...);

● offsetY = maxOfs * shake * GetPerlinNoise(seed+4, time, ...);

● offsetZ = maxOfs * shake * GetPerlinNoise(seed+5, time, ...);

Camera shake: random vs. smoothed noise

Smoothed fractal (e.g. Perlin) noise is WAY better than random for
screen shake. Why?

● Smoothed noise feels better

● Smoothed noise automagically works with pause and slow-motion

● Smoothed noise has adjustable frequency

● Smoothed noise is more easily reproducible on replay

● etc.

(demo: Mantis, Perlin vs. Random)

Takeaways
● Camera shake = trauma2 (or t3)

● 2D: translational + rotational

● 3D: rotational only

● Tread carefully in VR!

● Use Perlin noise for shakes
and for, like, everything else. Seriously!

Smoothed motion

● We often want the camera to follow the player.

● Player movement is often erratic, or jerky!

● Smoothed motion to the rescue.

● Best approach: consider use of cubic Hermite
curves (see: “Interpolations and Splines” from the GDC 2012 Math Tutorial)

● Or use a simple tool: Asymptotic Averaging

Smoothed motion

x += (target – x) * .1;

or

x = (.90*x) + (.10*target);

Asymptotic Average

x += (target – x) * .1;

says

“Each frame, we move
10% closer to our
target.”

x = (.90*x) + (.10*target);

says

“Each frame we take a
90/10 blend of ourselves

and our target.”

Asymptotic Average

Asymptotic Average

How fast it moves depends entirely on the weight.

We’re talking in the ballpark of:

0.01 = nice and slow (at 60 FPS)

0.1 = reasonably fast

0.5 = incredibly fast

“Asymptotic” because it never actually arrives!

(demo: Mantis, Asymptotic slow, medium, fast)

Asymmetric Asymptotic Average

Also, nothing says horizontal and vertical camera
motion need to be designed the same.

Nor does upward movement need to be governed
by the same rules as downward movement.

The Asymptotic weights can even be non-constant!

(demo: Mantis, Asymptotic custom 4,5)

Asymptotic Average: one last fix

x += (target – x) * .1

● This doesn’t pause or timescale
well!

...but we can hack around it by
scaling weight times timeScale:

e.g. 0=paused, .1=slow motion

* timeScale;

Takeaways
● Camera shake = trauma2 (or t3)

● 2D: translational + rotational

● 3D: rotational only

● Tread carefully in VR!

● Use Perlin noise for shakes
and for, like, everything else. Seriously!

● Asymmetric Asymptotic Averaging

Framing

Q: What is at the epicenter of our attention?

A1: Generally, the player.

A2: Or, at least, the player had better not ever
leave the screen (while we’re controlling her).

Framing: points of focus

Points of focus are key items which demand a high
amount of attention:

● Primary points of focus, like the player, should never
go out of view.

● Secondary points of focus, like a specific targeted
enemy, should not leave the view if possible.

Framing: points of interest

Points of interest, on the other hand, are items which
would prefer to be in view, if possible, all other needs being
met.

● Points of interest can cause the camera to frame its focal
points with a different bias

● Might shift to allow something just offscreen to be seen

● Might shift to draw your attention to something off-center

Framing: points of interest

You can subtly highlight many things with points of interest:

● Enemies

● Loot

● Buttons and levers

● Secret doors

● Traps

● Markers left by level designer (or procedural generator!)

Framing: soft and fuzzy

Feather influences to avoid sudden changes.

Generally, compute “proximity” to each point of interest:

● those outside a threshold have proximity 0

● those inside an inner threshold have proximity 1

● those within the inner & outer thresholds get ~[0,1]

● weight of each point of interest = proximity * importance

Framing: multiple primary focus points

Here’s the real struggle:

How do you handle multiple
mandatory/primary points of
focus?

e.g. Gauntlet:

Framing: multiple primary focus points
Q: How do you handle multiple mandatory points of focus?

A1: Screen cannot advance if a player would fall behind

A2: Players can move offscreen

A3: Players die if forced offscreen

A4: Players teleported back to main group body if offscreen

A5: Players can “drag” the screen (and other players) along

A6: Zoom out to encompass everyone

A7: Split-screen  this is the only option that doesn’t impact gameplay!

Framing: multiple primary focus points

However, split-screens suck in that
you give up 50% or 75% of your
screen real-estate.

This is especially sucky in co-op
games where the players are
mostly together 95% of the
time.

What can be done?

Takeaways
● Use soft feathering everywhere● Camera shake = trauma2 (or t3)

● 2D: translational + rotational

● 3D: rotational only

● Tread carefully in VR!

● Use Perlin noise for shakes
and for, like, everything else. Seriously!

● Asymmetric Asymptotic Averaging

● Blend points of focus & interest

Voronoi split-screen cameras
(demo: Eagle, 2P, shift-1, shift-4)

Can players fit onscreen within tolerance?

Voronoi split-screen cameras

If not...

Voronoi split-screen cameras

Compute screen-space Voronoi boundary

Voronoi split-screen cameras

Balance private screen spaces on distance

Voronoi split-screen cameras

Render separately, then stitch

Voronoi split-screen cameras

or, recenter regions on players

Voronoi split-screen cameras

Voronoi split-screen cameras

● Note: Feathering the transition between
merged and separated is crucial!

● Beyond an “outer” distance, views are fully separate

● Within an “inner” distance, views are fully merged

● Between “inner” and “outer”, we blend (cross-fade)
each view to converge toward the merged view.

(demo: Eagle, 2P, Y to disable merge feathering)

N-way Voronoi split-screen cameras

Q: What about 3 or 4 players?

Is it even possible?

A: You betcha!*

*though there are some tricky bits to navigate

(demo: Eagle, 2P, Y to disable merge feathering)

N players in absolute (world) space

N-way Voronoi split-screen cameras

Get relative displacements

N-way Voronoi split-screen cameras

Bisect for midway points & normals

N-way Voronoi split-screen cameras

Get boundary edges for each player-pair

N-way Voronoi split-screen cameras

Create world-space bounded convex hulls

N-way Voronoi split-screen cameras

Result is: world-space Voronoi regions

N-way Voronoi split-screen cameras

...used to shape private Voronoi regions

Compute and render separately with stencil

Composite for total view

World vs. Screen Voronoi regions

Direction to neighbor preserved over split

Direction to neighbor preserved over split

Direction to neighbor preserved over split

Direction to neighbor preserved over split

Rebalance screen real-estate (e.g.):

Iteratively relax virtual split positions

Takeaways
● Use soft feathering everywhere

● Consider Voronoi split-screen

● N-way split possible, but tricky

● Use juice liberally, yet wisely

● The camera is a character!

● Check out Itay Keren’s article:
Scroll Back: The Theory and Practice of Cameras in Side-Scrollers

● Check out these Math talks:
Fast and Funky 1D Nonlinear Transforms (GDC 2015)

Random Numbers (GDC 2014)

Interpolations and Splines (GDC 2012)

● Camera shake = trauma2 (or t3)

● 2D: translational + rotational

● 3D: rotational only

● Tread carefully in VR!

● Use Perlin noise for shakes
and for, like, everything else. Seriously!

● Asymmetric Asymptotic Averaging

● Blend points of focus & interest

Takeaways
● Use soft feathering everywhere

● Consider Voronoi split-screen

● N-way split possible, but tricky

● Use juice liberally, but wisely

● The camera is a character!

● Check out Itay Keren’s article:
Scroll Back: The Theory and Practice of Cameras in Side-Scrollers

● Check out these Math talks:
Fast and Funky 1D Nonlinear Transforms (GDC 2015)

Random Numbers (GDC 2014)

Interpolations and Splines (GDC 2012)

● Camera shake = trauma2 (or t3)

● 2D: translational + rotational

● 3D: rotational only

● Tread carefully in VR!

● Use Perlin noise for shakes
and for, like, everything else. Seriously!

● Asymmetric Asymptotic Averaging

● Blend points of focus & interest

Thanks!

