
1



Hello everyone, and thanks for coming today.

I’m James Answer, and I’m Principal Technical Artist at Sony’s London 
Studio, where I’ve worked for almost 9 years. The team I am on is 
currently working on virtual reality for Sony’s forthcoming Playstation VR, 
and I’m going to give you an overview of how we developed our tools and 
technology around it.

2



First I’m going to talk about the early work on our new engine that we 
started preparing for Playstation 4 and VR

Next, we’ll have a look at the experiences the studio has shown so far, and 
how they have shaped our engine

We’ll then have a look at the tech that we’ve developed since last year

And finally, content optimisation for VR

We don’t have a lot of time and a lot to cover, but we’ll see if we can fit in 
a couple of questions. Otherwise, I’ll be in the wrap up room afterwards.

3



London Studio has a long history of working with peripherals – we 
pioneered camera based gaming and augmented reality with EyeToy, 
EyePet and Wonderbook, as well as working with microphones and 
companion apps on Singstar. So working on VR is a natural fit for us, as 
we’re used to exploring new technologies and the possibilities they bring. 
We became of the first developers working with Morpheus, which was the 
codename for PlayStation VR. And true to it’s name, Morpheus became the 
source of all my dreams and nightmares over the last two years. A dream 
because VR is incredibly cool to work with, and being able to inhabit the 
worlds you create is amazing. And a nightmare because there are a lot of 
challenges in being the first!

So our remit as a first party developer and being VR evangelists is to 
introduce and showcase VR to the world, which means both the public and 
other developers.
Still doesn't help us focus that much - what *is* a VR game? It could be 
any genre or setting. And in the end we decided to work on many different 
games to best explore what VR can do.

As a result, we decided the main focus on tools and tech should flexibility 
and speed, so we could be reactive to whatever concepts we thought were 
going to work best.

4



We developed a brand new engine called LSSDK

Fully multithreaded, and designed with the PS4 architecture in mind.

To keep things flexible, we used a tiled forward renderer. This allows us to 
add new shading models easily without having to worry about packing 
attributes into a g-buffer, and also means transparencies can be handled 
identically to opaque objects. We also wanted to have the option of trying 
out 

A PC version is also built alongside, which isn’t optimised, but allows us to 
have full WYSIWYG editing on PC.

For my part, I implemented the direct lighting models for the new engine, 
based on the GGX lighting model, as well as shading models for pre-
integrated skin, hair and eyes.

5



We put a large effort into making a new game editor called Creator. 
Creator acts as a interface to the game engine, which is running alongside 
in a separate process. One nice thing about this is if the game crashes for 
any reason, Creator carries on running, so you can just reboot the game 
and carry on where you left off.

You can hot reload any resource without restarting the game, so models, 
textures, animations and scripts can all update on the fly. This gives us a 
one click export for most of our assets to seeing them in the headset.

You can also have multiple tabs open, running game sessions on different 
platforms. This means you can have the game running in VR on PS4 whilst 
you are editing the game through another camera on PC.

6



This is Creator. Although it looks like the game is running within it, it’s 
actually a display from another process. We also use the remote play 
functionality that’s used for streaming to Vita to give you a display on PC 
when you are editing on PS4.

7



We use Maya as our primary art authoring tool, though this is largely for 
asset creation, so models, skeletons and animations. The placement and 
gameplay functionality are done through Creator. We don’t run our engine 
in Maya, but our shader system is available here, which means we can get 
a reasonably good idea of what an asset will look like in game.

8



For the new engine we decided that we would have all our shaders go 
through Materials, which is Sony World Wide Studios shared node based 
material editor, in part because the backend shader code had become an 
order of magnitude more complex, making the barrier to entry even 
higher. In the new engine the lighting code is still handled with hand 
written code, with surface parameters like albedo, gloss, normals being 
plugged in to this black box.

Personally, I prefer writing code to node graphs a lot of the time for 
complex effects. Big node graphs can often end up being “write only”, so 
you know what you are doing when you author it, and it all seems to make 
sense at the time, until you come back a week later and it just looks like 
spaghetti. We alleviate this to a degree by creating custom nodes with 
shader code in.

<click>

All the orange nodes in this graph are bespoke code, with multiple inputs 
and outputs. This really helps us use the best fit of code vs nodes where 
each is suited.

It takes about a minute to generate a shader for PC and PS4, but we can 
iterate quicker on them in Maya. As the Maya version of the shader uses a 
single permutation, it only takes a couple of seconds to recompile.

9



Now I’m going to talk about how we applied the tools and tech to our 
experiences.

10



We’ve been developing on VR for over 2 years now, working alongside the 
development of the headset, and showcasing experiences at various shows 
and events throughout. The engine has also grown alongside in reaction to 
the team’s needs. So I’m going to go through all of our experiences in 
order to show you how the engine has developed.

First, I’m going to show you some footage of our experience which has the 
working title “Into The Deep”.

11



12



We experimented with many different concepts, but the one we wanted to 
show first was Into The Deep. We showed this at GDC 2014 with the first 
public showing of Morpheus. The Deep is a trip though a coral reef in a 
diving cage down in to the depths of the ocean, where you encounter an 
enormous great white shark up close. 

And we already some have pretty unique rendering requirements!

Physically based scattering and absorption to give a realistic ocean feel

Caustics which diffuse as you go further into the ocean

We didn’t even have a skybox, so have to have a custom underwater 
surface shader to refract a cubemap above the surface or reflect below the 
surface.

But more than that, this was really the first real test of our engine and 
tools

Basically everyone was getting up to speed at this point, and learning how 
to use physically based materials. We didn’t have much time to rest 
though, as we swiftly moved on to our next game, VR Luge.

13



14



VR Luge is an adrenaline filled rush down a mountainside on a luge, 
dodging traffic, controlled entirely with the headset through leaning. We 
showed this for the first time at E3 2014, so pretty soon after the last 
demo. For the Luge we developed localised cubemaps, as we wanted to 
have reflections as you go through tunnels.

We also added an atmospheric sky simulation to give a realistic sky colour 
and scattering on the scenery, which can be augmented with cloud 
textures

We added decal support – as we are using a forward renderer, decals can 
be quite expensive, so we try to use stencilled alpha on decals where 
possible, but we do have the option of blended. Our prepass also outputs 
normals which allows us normal blending.

The next game was The London Heist.

15



16



Our first showing of The London Heist was last year at GDC, and was an 
experience where you are being interrogated by a burly gangster called 
Mickie, who demands to know what happened during a botched heist. You 
then have a flashback to the heist itself, where you can interact with 
objects and have a shootout with dual Move controllers.

We’ve had a fair amount of time since the last game at this point, so we 
have many new features

The main one is a resolution increase from targeting 1080p to 1.2-1.3 
times that. That doesn’t sound like a lot but it’s actually 1.7x the number 
of pixels being displayed.

This was a huge challenge, so a large portion of our time went into 
delivering engine optimisations, which I won’t go into detail on, but big 
ticket items were things like asynchronous compute light tiling and 
deferred shadows.

We also added temporal anti-aliasing. I’ve seen advice previously about 
not using temporal AA on VR. Now, it is a trade off, in that it does tend to 
have a blurring effect on the image. However, we’ve found to create a 
sense of presence it’s more important to remove flickering pixels that 
make it obvious you are looking at a game than it is to have a sharper 
image.

It also takes a chunk out of our frametime compared with something like 
FXAA, and you have to be mindful of artifacts which are much more visible 
in VR, but we think overall the results are worth it

17



Reprojection shown for the first time – at this year’s GDC we showed a new 
version of PlayStation VR with a 120hz refresh rate. Reprojection allows us to 
continue to render at 60hz, but rotates the rendered image based on the current 
headset orientation at 120hz. As well as smoothing out the motion, this process 
happens at the last possible moment before being sent to the display, reducing 
latency. This was a big leap in presence. Removing the lag makes you think your 
head is moving within the environment, rather than controlling a camera.

Our first use of the character shaders – this is one area where it shows how 
unpredictable and varied the development experience was. We actually developed 
the lighting models for skin, hair and eyes very early on, but they remained 
unused for a year!

This was also a our first attempt at interacting with a character in VR. We use 
Morpheme as our animation system, which lets us make Mickie reactive to your 
position and act differently depending on what you do, rather than being a linear 
cutscene.

The London Heist went down extremely well, and we showed another segment of 
it at E3 called The Getaway.

17



That brings us up to date. So what’s new?

18



The Getaway was shown to the public at E3 last June, so what have we 
been working on since?

Well, we have been working on other experiences, but I can’t talk about 
them just yet.

After The Getaway we had a pretty good core feature set and 
performance, so we started to work on some more cutting edge 
techniques.

I’m going to talk about our new ambient lighting, some optimisations 
which allow us to hit higher resolutions, and character shading 
improvements.

19



We wanted to make some improvements to our ambient lighting system. 
The specular was OK, and fairly industry standard using parallax corrected 
cubemaps, but our diffuse ambient was captured at the same frequency, 
so we had a bounding box covering large areas. This gave a very flat look 
to the environments, and didn’t capture much variation in the bounce 
lighting.

Early on in development we tried using lightmaps, but abandoned them for 
a few reasons. We disliked the slow turnaround time of bakes, and also 
having to layout lightmap uvs. In addition to that, the first experience we 
made was the Deep, and our lightmap solution didn’t know anything about 
the scattering and absorption that are key to the look. Lightmaps also only 
work for static geometry, so we would still need another solution for 
dynamic objects.

Our first thought was to simply generate more probes, by flooding the 
scene based on a voxel representation of the level, but this would still take 
a reasonable amount of time to update.

20



Bruno, one of our graphics programmers, had another idea though, and 
developed a solution called lightfields. This is a voxel based global 
illumination solution that’s fast enough to run in realtime for VR. As well as 
giving us the flexibility to have dynamically updating ambient light, we also 
have the option of caching off the results. The benefit of this is 
instantaneous feedback whilst lighting. The solution also supports lighting 
from emissive meshes, which gives us some cheap area lighting where we 
need it.

21



Here’s a Cornell box being lit entirely by emissive meshes.

22



This is the Heist scene with our old lighting setup, realtime lights for the 
wall lights, and a couple of ambient probes for diffuse and specular.

23



And this is the lightfields version. You can immediately see a lot more 
variation and depth to the ambient lighting, and more correct wide scale 
occlusion.

24



Lightfields is a good fit for VR. As well as the speed, it’s a world space 
solution, so there’s no difference between the eyes. It’s stable, so there’s 
no flicker or shimmering, and it’s resolution independent, in that most of 
the work is done off screen.

25



On the left there’s a shot with lightfields, and on the right is a shot 
without. You probably can’t really notice much of an improvement, and 
that’s deliberate as this was a test to show how we can reduce our light 
complexity.

26



The original version used a lot of manually placed fill lights to create 
interest in the ambient. On the right you can see the amount of complex 
lighting we have in the scene to simulate the bounce light. With lightfields
we could massively simplify the lighting to a few key lights whilst 
maintaining the look. You do lose some artistic control, but interestingly 
the original version done by eye was remarkably similar to the lightfields
version. You do still have the option of placing fill lights into the scene as 
well, which can be set to only affect the lightfield, making them essentially 
free.

27



The big win with lightfields has been the speed of iteration, and also giving 
us much more interesting lighting results without having to manually place 
fill lights.

We are currently using the static version of lightfields in the London Heist, 
we need to work on a larger scale version for VR Luge and Into the Deep

The main disadvantage compared to lightmaps is that it’s much lower 
resolution. This means you can only really use it for ambient or fill rather 
than baking spotlights onto the environment, for instance.

28



Next I’m going to talk about how we managed the resolution requirements 
of VR

29



The left image shows what we render before distortion for the lenses. The 
red area isn’t needed, so we mask it out. This saves us about 20% frame 
time for no visual loss. I think this is covered in all the VR SDKs at this 
point.

30



The lens distortion applied for viewing in the headset means we need to 
render at a high resolution in centre of the image

Ideally this should be 1.4x1080p to get 1:1 pixel matching

I’m going to show you a little video to explain

31



Here you can see the final image we need for the lens in the headset.

We have to render a larger image, then essentially shrink wrap it onto the 
final image

Notice how the centre remains at the same size.

32



But as you can see, there’s a lot of resolution used on the outside of the 
image. Not only is it oversampled compared to the middle, but generally 
speaking you don’t care about it as much.

Other solutions that have been proposed in the past include rendering a 
high resolution insert in the centre, or Nvidia’s solution which is to have 9 
render targets stitched together.

33



But we wanted a solution that didn’t increase the number of targets doing 
so has a number of disadvantages like extra vertex processing, having to 
render overlaps to have a smooth transition between the different 
resolutions, and the extra CPU burden of rendering the objects multiple 
times.

34



We came up with a technique which we call a resolution gradient. Here’s a 
shot of Into The Deep

35



We mask out a dither pattern in increasing amounts, so 25%, 50% and 
then 75% of the pixels aren’t rendered at the edges. We currently mask 
out 2x2 pixel quads, as masking out single pixels isn’t GPU friendly, but I’ll 
come on to this later.

<click>

We change these dither patterns every frame.

36



We then fill those holes by taking neighbouring values through a dilation 
filter

37



This gives us stair stepping artifacts

38



But our temporal anti-aliasing can clean most of this up as we are 
constantly feeding in new information due to the varying dither pattern.

39



This technique isn’t perfect, you do get some quality loss, but you are 
generally quite forgiving if it isn’t in the centre of your field of view. And 
we save about 25% GPU time, so it’s a good tradeoff.

We are working on a technique using hardware antialiasing to only mask 
out single pixels rather than 2x2 quads. This should improve the quality to 
the point where we hope you won’t be able to notice it.

40



The last batch of new techniques I want to talk about are for character 
rendering.

41



Characters are very important for the London Heist. They are very close, 
and have your full attention. It’s important we get the shading right so you 
can read the facial expressions clearly.

42



The first thing we added was vertex renormalisation. This is a process we 
do in a geometry shader, and it calculates new face normals based on the 
deformed mesh. We first identified this as an issue on EyePet., and had an 
SPU process to recalculate the normals dynamically.

Maya always processes meshes in this way, so animators need this to work 
the same in game if they want their facial expressions to match.

43



If you rotate joints, the normals work acceptably well – they just rotate 
with the joint based on the weighting. But facial animation largely uses 
translations rather than rotations, and that doesn’t update the normal at 
all.

The left section of this image shows what happens if you translate a joint 
on a skinned mesh using a standard game pipeline. The normals all 
continue pointing upwards, so the lighting is flat. The right hand section is 
what you get when you generate new face normals – everything looks like 
you would expect.

44



Here’s a standard game skinning pipeline

45



And here’s the same mesh with recalculated normals. It’s difficult to say 
that one looks more correct than the other from a still, but an important 
thing is that the normals are constantly changing on the recalculated 
version, making the face feel more alive.

46



The next thing we added was support on the skin shader for bent normals

Bent normals are a normal map that store the average unoccluded
direction of a point on the mesh. When you apply them to your ambient 
lighting lookups, you can reduce the amount of light leaking coming 
through areas that should be occluded.

With storing bent normals and wrinkle maps, we end up having quite a lot 
of textures. To reduce the memory and bandwidth requirements, we store 
the wrinkle maps and bent normals as offsets from the high resolution 
base normal map. We only need the offset maps to reflect coarse lighting 
changes on the face, with high frequency detail like pores and smaller 
wrinkles remaining on the base map. We pack the 5 offsets into 3 textures 
using BC7.

47



This is standard normal mapping

48



And bent normals. You can hopefully see the reduced light leaking, 
particularly on the bottom of the nose.

49



Lastly, I want to talk about our ambient occlusion on characters

We have a pretty good refractive eye shader, but the most common 
complaint about it is that it didn’t seem bedded in enough. We had similar 
complaints about teeth being too bright.

This really comes down to having a good AO solution, and in this case 
screen space ambient occlusion didn’t really give us the resolution or 
control we need.

Previous solutions to this problem have included skinning geometry with 
an AO gradient on to the eyelids and lips. This is quite a fiddly solution 
though, as it’s difficult to manage interpenetration from the meshes with 
all poses.

I had the idea to generate a distance field representing the eyelids and 
mouth. Looking at the skeleton, we already had joints fairly well placed in 
these areas, so I create a ring of line segments using these positions and 
calculate the distance to the nearest one.

We can then use this to generate AO and cavity values

50



Here’s our eye shader.

51



Here are the eyelid joints

52



This shape represents a distance field from line segments joined between 
the joints. We can get this in the shader.

53



Better still, as the eye is roughly spherical we can project the joint 
positions onto the eyeball surface reasonably easily to get a better result

54



And this is the field applied to the eye, exaggerated a bit for clarity. There 
are artist controlled values to adjust the amount and distance of AO and 
cavity values independently.

55



As you can see, it’s a large difference.

56



This is the shader code. Thanks to Iñigo Quilez for distance function. It’s a 
fair amount of maths, but the pixel coverage is generally low. This is an 
example of one of our bespoke shading nodes I mentioned earlier – I think 
it’s much more readable in code.

57



Here’s the face without distance field AO

58



And with. The facial expression here reads quite differently with the AO 
applied. We also apply it to the teeth in a similar fashion but without the 
spherical projection.

59



My last section today is on optimisation.

60



We are very conscious of performance. 60fps in a 2D game is difficult. 
60fps with no frame drops ever, at greater than 1080p resolutions is even 
more difficult. On top of that, after tracking and reprojection are taken off 
we have about 15ms budget on GPU.

It’s important to keep a constant 60 fps though, as immersion is greatly 
improved, and low frame rates can cause nausea.

It's worth the effort, too. VR may mean you have to make assets that 
don't look at refined as a 2D game, but the experience is transformative.

Still, as game developers and artists we always want to push things as far 
as we can

There’s nothing really special about optimisation for VR other than that 
things often need to have more detail if you can get close to them or pick 
them up, but for performance need to drop to appropriate LODs quickly. 
As a result we’ve spent a lot of time on our LOD tools.

61



We use Simplygon as our primary tool for generating them. We found that 
adding the functionality to generate mesh lods, which are basically a poly 
reduced model using the same materials, was very easy to get in.

Proxy LODs were more difficult though. Proxy LODs can bake a mesh or 
number of meshes with many different materials into one entirely new 
mesh and textures through a voxelisation process. The mesh can in many 
cases be more efficient, particularly for the lower lods, as it doesn’t have 
to respect the existing uv layout. Because it bakes a new normal map the 
mesh often lights more correctly, also. The main disadvantage is that you 
generate new textures for each LOD, so your texture memory 
requirements go up, but we have some strategies for dealing with this, as 
I’ll go into shortly.

The problem with implementing Proxy LODs is that Simplygon needs to 
understand how your shaders work. We have a wide variety of shaders 
that we want to bake down, and although Simplygon has functionality for 
this, we didn’t want to build a system to translate our shaders over.

Andrew Maximov from Naughty Dog had a cool suggestion though – if you 
can already render your materials in Maya (and we can), flatten them into 
UV space and do some renders! So that’s what we did.

62



Here we have a drone from The Deep. It’s a relatively simple shading 
setup, 2 materials and 7 textures. Obviously with layered shaders you can 
have a lot more inputs. The input mesh here is about 14k polys.

63



The first thing we do it to bake all the material outputs from the shader. 
These correspond with the values that we pass from our material editor 
into our lighting models. This is the shader that’s used on the drone. As 
you can see, it’s pretty simple, it doesn’t really do much other than read a 
few textures and pass the values along.

64



We run the model through Maya’s automatic UV mapping to generate a 
new set of unique UVs, and use the vertex shader to flatten the model into 
UV space. Here’s the process with world space normals.

65



We go through this process for 6 maps, which are 

• Base colour

• World space normals

• Metallic, gloss and occlusion packed into one texture

• Emissive is an HDR value, so we pack this in RGBD format over two 
textures

• Opacity

We also pad the edges to remove any seams. This all gets sent into 
Simplygon and we end up with…

66



Our LOD1 model, which is about 3800 tris. The textures you can see here 
don’t make a lot of visual sense, as they have been swizzled. We convert 
the base colour from RGB into YCoCg luma and chroma format, and store 
textures at different resolutions.

The largest texture contains:

• Normal X and Y

• Gloss

• Base colour luminance

These are the most important components

The next texture contains

• The base colour’s two chroma channels

• Metallic

• Occlusion

This can not only be stored at a lower resolution to save memory, but we 
also bias the texture sampling to always sample 1 mip lower than usual to 

67



reduce texture bandwidth.

The last texture contains emissive stored in RGBD packed format. For this model, 
we need emissive, but obviously not all models do. So emissive and opacity 
textures are only generated and used on models that need them.

All the textures are compressed as BC7.

So we already store the second texture at a lower resolution, but in many cases 
even that can be improved upon.

67



Here we have replaced the second LOD texture with vertex colours. There 
is a noticeable difference on this model, particularly on the bottom of the 
turbines, but many models have very little variance in their chroma or 
metallic parameters, and you can only spot a difference in the occlusion. 
The result is that many of our proxy LODs can represent a full physically 
based material using only 1 texture read.

I hope on our next project to get some of these packing techniques onto 
our main models as well as the LODs to reduce texture bandwidth.

68



I think that’s about all I have time for today!

69



We had a lot to do at the same time. The arrival of PS4, developing a new 
engine, and also writing the rulebook for VR as we went along was hard

Our approach to making a flexible pipeline made this a lot easier. If in the 
future we develop a title which has more known content, it’s likely that we 
will shift our focus away from the pure flexibility we have now, to solutions 
that are a bit more bespoke for the game. However, we are likely to keep 
the many of the same philosophies in the future, particularly around 
keeping the iteration times down to as short as possible.

70



Thank you for coming!

You can email me any (further) questions at this address, and also I’ll be 
doing a wrap up session in Overlook 2022 if you want to chat about 
anything.

71



72



The first thing I want to talk about is quad overdraw.

So what is it? Well, GPUs process pixel shaders in 2x2 pixel quads. They 
need to do this so they can calculate derivatives, which are the rate of 
change in a parameter between pixels. The most common use for this is 
for uvs, as the rate of change of the UVs determine what mip-map to use.

Unfortunately, this means if you have multiple triangles in a quad, it costs 
you. A quad with the maximum of 4 triangles in costs 4x as much to 
render on the pixel shader.

This affects our renderer more than a deferred renderer. In a deferred 
pipeline, you get quad overdraw when you render your g-buffer, but as the 
lighting is all done on a single tri the complicated lighting shaders have no 
quad overdraw.

On a forward renderer like ours, you pay the quad overdraw cost on both 
the prepass and the main pass which does all the lighting, so it hits us 
worse.

73



This is a shot from our VR Luge game. We have a fairly standard debug 
view of wireframe on shaded <click>

This gives us a good idea of the geometry in the scene, and we can see in 
this case that these corrugated panels have a fair few polys. But although 
we know it’s going to cost the GPU to transform the triangles on the vertex 
shader, we can get a better idea of how the pixel shaders are affected with 
the quad overdraw view

This view shows how much extra work we are doing for quad overdraw. 
Black is fully efficient – the quad only contains 1 triangle, no extra work is 
done. Blue means the quad contains two triangles, and you always get this 
on tri edges. Green and red are 3 and 4 respectively. Obviously we want to 
avoid this if possible.

You can see this section is pretty bad – we would want to replace the 
corrugated section with a plane with normal map as soon as possible. On 
the bottom here you can also see the effect of bevelling geometry. 
Although it’s easier to do than adding it into a normal map, and it allows 
you to tile textures more easily, bevels can hurt performance if not used 
carefully.

74



This is a shot from our Street Luge game. We have a fairly standard debug 
view of wireframe on shaded

This gives us a good idea of the geometry in the scene, and we can see in 
this case that these corrugated panels have a fair few polys. But although 
we know it’s going to cost the GPU to transform the triangles on the vertex 
shader, we can get a better idea of how the pixel shaders are affected with 
the quad overdraw view

This view shows how much extra work we are doing for quad overdraw. 
Black is fully efficient – the quad only contains 1 triangle, no extra work is 
done. Blue means the quad contains two triangles, and you always get this 
on tri edges. Green and red are 3 and 4 respectively. Obviously we want to 
avoid this if possible.

You can see this section is pretty bad – we would want to replace the 
corrugated section with a plane with normal map as soon as possible. On 
the bottom here you can also see the effect of bevelling geometry. 
Although it’s easier to do than adding it into a normal map, and it allows 
you to tile textures more easily, bevels can hurt performance if not used 
carefully.

75



This is a shot from our Street Luge game. We have a fairly standard debug 
view of wireframe on shaded

This gives us a good idea of the geometry in the scene, and we can see in 
this case that these corrugated panels have a fair few polys. But although 
we know it’s going to cost the GPU to transform the triangles on the vertex 
shader, we can get a better idea of how the pixel shaders are affected with 
the quad overdraw view

<click>

This view shows how much extra work we are doing for quad overdraw. 
Black is fully efficient – the quad only contains 1 triangle, no extra work is 
done. Blue means the quad contains two triangles, and you always get this 
on tri edges. Green and red are 3 and 4 respectively. Obviously we want to 
avoid this if possible.

You can see this section is pretty bad – we would want to replace the 
corrugated section with a plane with normal map as soon as possible. On 
the bottom here you can also see the effect of bevelling geometry. 
Although it’s easier to do than adding it into a normal map, and it allows 
you to tile textures more easily, bevels can hurt performance if not used 
carefully.

76



What can we do about it?

Well, there aren’t any easy wins. The best method to combat it is to avoid 
using geometry where you can and use normal maps instead, and LOD 
effectively so that the triangle density is relatively consistent throughout 
the scene. For further reading and on how to implement the debug view I 
recommend Stephen Hill’s excellent post on the subject.

77


