
Moonlight Blade Rendering
Performance Optimization

Xie Weibo
Advanced rendering engineer, Tencent mercury studio

Performance
Analysis Tools

Stat System

GPU Profiler

Stat System

• Real-time statistics of various performance indicators

• Important tools for CPU performance and memory

• mainly include:

 CPU performance

 Memory

 GPU load

 Culling

 Speed Tree

 Animation sound

GPU Profiler

• Real-time statistics of each game module’s

GPU overhead

• Lightweight, has little impact on the game

performance

• In-built Profiler, independent of third parties

• Other projects can also use it easily

• UE3 – FarCry has not this feature

• FinalPass
• Bloom,GodRay,DOF,EyeAdaption

• ColorGrading,Gama Space

• 9TEX 45ALU,0.75ms on GTX660Ti 1080P

• After optimization 5TEX 15ALU,0.5ms,AA saved
0.1ms

• DOF optimization has obvious flaws in observer mode
• Switch the observer mode to full precision and use optimized version

during normal game process

• SRGB Write and Pow(color,1/2.2) are not exactly the
same

• In fact, not so relevant, you can also choose to ignore

• Calculate together in the ColorGrading

Shader instruction optimization case

Point light rendering

• Sphere as proxy mesh

• Stencil Pass + Light Pass

• Avoid the same pixel from being exposed to too much point light
sources

• Extra large point light source overhead is comparable to that of
sunlight
• Calculation of sunlight overhead 1.1ms,5 TEX+75ALU
• Calculation of individual point light overhead 1.0ms,4 TEX+66ALU
• Full Screen Copy 0.9ms！！！
• Combination of extra large point light source and sunlight 1.15ms
• Saved nearly 1ms(GT430,720P)

• The performance of extra large point light source accounts for 30-50%
of all point light sources performance

Point light optimization

Water reflection optimization

• Reflection simplification

• Reduce the amount of reflection

• Objects without pixel contribution do not need reflection

• Local Reflection

Local Reflection

• Large-scale particle pixel filling is a big bottleneck

• Many particles mainly contain low frequency information

Quarter Buffer rendering of
transparent objects

Quarter Buffer causes significant
aliasing

Full Resolution Quarter Resolution

• A magical Filter, can achieve good anti-aliasing when doing UpSample

• AMD(Mixed Resolution Rendering)
• 1 Hi Depth + 4 Low Depth + 4 Low Color = 9 Texture samples

• NV OpacityMapping
• Nearest-Depth Bilateral Filter

• Use Nearest-Depth Filter for edge pixels and use bilinear interpolation for
non-edge pixels; Adaptive Bilateral Filter.

Bilateral Filter

Quarter Buffer Performance Data

Save 1.7ms!!!

SandSmoke QuarterDepth Particles UpSample Total

¼ Buffer off 0.0ms 2.8ms 0.0ms 2.8ms

¼ Buffer on 0.05ms 0.9ms 0.15ms 1.1ms

Save 1.5ms!!!

VolumeCloud QuarterDepth Particles UpSample Total

¼ Buffer off 0.0ms 2.5ms 0.0ms 2.5ms

¼ Buffer on 0.05ms 0.8ms 0.15ms 1.0ms

Memory Optimization
• Using Default mark in resource mapping, and reloading when

device lost can save about 70-100mb memory

• Optimizing RenderPipeline can save nearly 80mb memory

• Optimizing SpeedTree Instance Buffer can save 100mb memory

• Adding garbage collection for SpeedTree can save 40-60mb
memory

• Adding 7e3 hdr format for low and medium configuration and
using pre-exposure to decrease banding can save 20mb memory

• In 2013 test, the memory of Hangzhou city gate has been
optimized from 382mb to 217mb (with high configuration)

RenderTarget allocation

• Use Pool to allocate
• Share RenderTarget

• Manage RenderTarget lifecycle

• Track RenderTarget allocation by name

• GC

• A2R10G10B10

• The range of 7e3 is【0-31.875】, with the smallest precision error of
0.002.

7e3 Buffer

20MB VM Saved

Visibility Optimization

• Use Tag Visibility Test to greatly improve the efficiency of Visibility Test (by nearly 4 times)

• Use Tag’s Software Occlusion Culling，to clip invisible objects according to terrain, and greatly
improve the performance

• Integrate the bounding box function within object to greatly improve the performance of home city

• Speed Tree uses Tag Occlusion Culling to improve the performance

Occlusion Debug View

Test results of Jiuhua area without Occlusion

Test results of Jiuhua area with Occlusion

Jiuhua Occlusion Culling Debug View

Jiuhua data comparison

Test Conditions Culling Total Terrain List Parse Mesh List
Parse

Draw GBuffer Total CPU CPU Saved

Occlusion Culling off 0.29ms 0.68ms 0.26ms 2.35ms 16.10ms 0

Occlusion Culling on 0.76ms 0.24ms 0.05ms 0.99ms 14.53ms 1.57ms

Test Conditions Triangles
Total

Triangles
Terrain

Triangles
Static Mesh

Triangles
Speed Tree

Triangles
Saved

GPU Total GPU
Saved

Occlusion Culling off 1132884 129040 438958 518486 0 10.71ms 0

Occlusion Culling on 515151 71968 193032 203795 617733 9.2ms 1.51ms

Test Conditions DP Total DP Terrain DP Static Mesh DP Speed Tree DP Saved

Occlusion Culling off 1198 430 341 105 0

Occlusion Culling on 608 123 88 83 590

Test results of Hangzhou home city without
Occlusion Culling

Test results of Hangzhou home city with
Occlusion Culling

Hangzhou home city Occlusion Culling Debug
View

Hangzhou home city data comparison

Test Conditions Culling Total Terrain List Parse Mesh List
Parse

Draw GBuffer Total CPU CPU Saved

Occlusion Culling off 0.51ms 0.61ms 0.78ms 3.53ms 21.91ms 0

Occlusion Culling on 1.35ms 0.03ms 0.10ms 0.59ms 16.50ms 5.41ms

Test Conditions Triangles Total Triangles
Terrain

Triangles
Static Mesh

Triangles
Speed Tree

Triangles
Saved

GPU Total GPU Saved

Occlusion Culling off 1546871 102128 952971 239556 0 13.92ms 0

Occlusion Culling on 408263 33536 259931 41463 1138608 9.83ms 4.09ms

Test Conditions DP Total DP Terrain DP Static Mesh DP Speed Tree DP Saved

Occlusion Culling off 2225 417 832 77 0

Occlusion Culling on 764 23 192 43 1461

Visibility Optimization

• Use Tag Visibility Test to greatly improve the efficiency of Visibility Test (by nearly 4 times)

• Use Tag’s Software Occlusion Culling，to clip invisible objects according to terrain, and greatly
improve the performance

• Integrate the bounding box function within object to greatly improve the performance of home city

• Speed Tree uses Tag Occlusion Culling to improve the performance

Occlusion Debug View

Test results of Jiuhua area without Occlusion

Test results of Jiuhua area with Occlusion

Jiuhua Occlusion Culling Debug View

Jiuhua data comparison

Test Conditions Culling Total Terrain List Parse Mesh List
Parse

Draw GBuffer Total CPU CPU Saved

Occlusion Culling off 0.29ms 0.68ms 0.26ms 2.35ms 16.10ms 0

Occlusion Culling on 0.76ms 0.24ms 0.05ms 0.99ms 14.53ms 1.57ms

Test Conditions Triangles
Total

Triangles
Terrain

Triangles
Static Mesh

Triangles
Speed Tree

Triangles
Saved

GPU Total GPU
Saved

Occlusion Culling off 1132884 129040 438958 518486 0 10.71ms 0

Occlusion Culling on 515151 71968 193032 203795 617733 9.2ms 1.51ms

Test Conditions DP Total DP Terrain DP Static Mesh DP Speed Tree DP Saved

Occlusion Culling off 1198 430 341 105 0

Occlusion Culling on 608 123 88 83 590

Test results of Hangzhou home city without
Occlusion Culling

Test results of Hangzhou home city with
Occlusion Culling

Hangzhou home city Occlusion Culling Debug
View

Hangzhou home city data comparison

Test Conditions Culling Total Terrain List Parse Mesh List
Parse

Draw GBuffer Total CPU CPU Saved

Occlusion Culling off 0.51ms 0.61ms 0.78ms 3.53ms 21.91ms 0

Occlusion Culling on 1.35ms 0.03ms 0.10ms 0.59ms 16.50ms 5.41ms

Test Conditions Triangles Total Triangles
Terrain

Triangles
Static Mesh

Triangles
Speed Tree

Triangles
Saved

GPU Total GPU Saved

Occlusion Culling off 1546871 102128 952971 239556 0 13.92ms 0

Occlusion Culling on 408263 33536 259931 41463 1138608 9.83ms 4.09ms

Test Conditions DP Total DP Terrain DP Static Mesh DP Speed Tree DP Saved

Occlusion Culling off 2225 417 832 77 0

Occlusion Culling on 764 23 192 43 1461

• Improve Billboard details

• Integration of Billboard and

land surface

• FarTree

• Vegetation mirror

• Optimization methods

Vegetation

Improve Billboard details

Integration of Billboard and land
surface

FarTree

• It looks like that the fartree has a high density

• It does not affect the close-range trees which will affect the gameplay

• Will not notice the sudden appearance of fartree when the camera is
moving

• Scaling the fartree makes the mountains more spectacular and
impressive

• Performance overhead is low

Vegetation mirror

• Fully automatic, will not increase the workload of artists

• will not bring additional memory overhead

• Try not to bring additional performance overhead

• The height of hangzhou terrain mirror can be scaled

• Some tree mirrors may fall into the water
• Water height is a reference, the trees lower than this height do not need to be rendered

Vegetation performance optimization

• Shadow Optimization

• CPU Optimization

• Data Optimization

• Occlusion Culling

• Memory Optimization

• Vegetation Shadow Cache

• Framing accumulating the fourth shadow layer of

vegetation

• Vegetation Shadow Occlusion

Shadow Optimization

CPU Optimization

• FreeAlloc and quick allocation releasing tree nodes

significantly improved the fluency

• Cache BuildInstanBuffer time has been optimized

and shorten from 7-8ms to 0.5ms

• Enabled compiler SSE optimization

Vegetation Resource Optimization

• Data reduction

• More reasonable LOD

• Increased appropriate LeafCard

vertex to reduce OverDraw

• DumpTree (census)

• TreeComplex

• Mipmip Level Debug

Data Optimization

Occlusion Culling

• Used DefaultPool to allocate mapping and reduce memory
usage

• Too much reserved memory for Instance Buffer wasted a
lot of memory

Memory Optimization

FarTree Performance

GPU performance without FarTree GPU performance with FarTree

GPU overhead increased 0.5ms

CPU overhead increased 0.5-1ms

The number of trees increased from 2-3000 to 50-90k, significantly

increasing the scene content

• Tree replacement reduced the overhead

• Halved the texture size halves, and reduced memory for
mapping by 4 times

• Reduced the number of fartrees

• Decreased the show distance of trees

Low and medium configuration
optimization

Final results of far vegetation

• Can interact as the grasses

• Show distance is the same as that of far plane

• Very dense and thick!!

• Use the rendering mode of grasses for close-range flowers
(interactive)

• Use FarTree mechanism for far flowers

Flowers

Wheat field

• Landmark view outside the Kaifeng city

• Accounting for half of all the vegetation of Kaifeng city

• The overhead is very high

• Product value
• Objects covering the whole scene
• Greatly extended the perspective

• Basic ideas

• Moonlight Blade requirements

• Practice

• Performance data

Impostor Rendering

Basic ideas

• Offline Texture Generate

• Same objects share the same texture

• Instance finished at one time, and every object is a patch

Moonlight Blade requirements

• Not need to load the entity of small objects

• Fully automatic Cook Impostor Texture

• Offline Impostor taking over the rendering of all small
objects

• Use one DP to draw all small objects

• Cook Impostor
• Covering all types of Mesh in the map
• Calculates the Bounding projection at 300 meters away with 1080P,

classified by 64-bit and 32-bit
• Records every object’s UV and size in mapping
• Uses DXT to compress

• Expand the load range

• What happened?

Impostor Practice

Home city performance test

• Entity number

• Memory

• CPU time

• GPU time

• Graphics card load

• Culling

• Reflection

Entity number

• Decreased from 2206 to 1971

CPU time

• MeshListParse saved 0.36ms

• Gbuffer saved 0.65ms

• GBufferOpaque saved 1.4ms

GPU time

Graphics card load

Culling

• Impostor adding additional visibility needs 1ms

• Not Load far entity

• Raster Obb time reduced from 2ms to 0.5ms!!!

• Basically the same

Reflection

• CPU time saved 0.35ms

• GPU time saved 0.4ms

Hidden Buff of Reflection
• Thinking out of the box

• Reflection and main Camera clipping together

• Results
• Reflection and main Camera shared the results of Culling
• Reflection and main Camera shared Instance Buffer filling
• Reflection and main Camera became two unions, the

performance will double when using head-up camera
• Whole scene reflected Impostor

• Philosophy behind
• Seek common ground

Offline Impostor summary

• Increased the content of far scenes

• Drew more graphics, but brought better performance

• Graphic quality slightly degraded, but is still acceptable at
a far distance coupled with fog

• Has passed the third test

Data Optimization

• Product-oriented

• Definition of appropriate resources

• In-depth analysis of gameplay concentrated
areas

• Very good output

Data Optimization

• Rocks with mixing textures

• Model LOD

• Internal bounding box

• Vegetation data optimization

• Implementation methods:
• Multi-layer texture mixing
• Use vertex color to control the weight

• Efficiency
• Unnecessary calculations
• Too much vertex models
• Internal bounding box

Rocks with mixing textures

Rock
Optimization

Number of
triangles

GPU time FPS

Before 220w 13ms 22

After 63w 5.1ms 32

Model Optimization

• LOD
• Most models have lod, because the feature of lod/pop switching is not

enabled
• Dongyue case was quite a shock, so we decided to enable lod
• Successfully resolved the problem of lod switching (screen door)

• The hair occupied too much two-sided triangles
• Simplified, and enforced CW at a far distance

• Two-sided texture
• Only a small part of model require two-sided texture

• AlphaTest
• Only a small part of model require alphatest to split the models

• Very helpful for home city optimization

• The performance of home city is much better than that of
many wild regions

• Only did terrain Occlusion Culling for wild regions in the
third test

• Used internal bounding box wherever big object exists

Internal bounding box

• Vegetation resource simplification (models, LOD)

• Reduced grass density

• Reduced grass patch

Vegetation data optimization

• First solved the most serious performance problems

• Brought confidence to the project team

• Shared the successful experience with the level and art
teams

Results of data optimization

