
Shrinking Data
for Fun & Profit

Dietmar Hauser
Head of Programming @ Sproing

Why shrink data?

Money!

Reduce bandwidth costs

Initial download / updates

Continuous connections

Expand reach

Decreased loading times

Smaller app size

Why is it fun?

A history of neglect

+

More use cases every day

+

A recent „Gold rush“

Why is now a good time?

CPU / Memory gap

Fidelity /

Bandwidth gap

Hi res displays

versus

bandwidth & storage

What is data compression?

Wikipedia:

„[...] encoding information

using fewer bits

than the original representation“

Two flavours of compression

Lossless

All information is retained

Lossy

An approximation is retained

History & Concepts

Information Theory, ~1948

Claude Shannon

Entropy

Shannon limit

History & Concepts

Prefix code, ~1952

Variable length code

Translated with a dictionary

Constructed with Huffman tree

Fast and efficient

Still used today

History & Concepts

Lempel-Ziv, 1977

Base for the LZ-family

Refers back to already processed data

„Sliding Window“

Implicit dictionary creation

History & Concepts

Deflate, 1991

LZ77 + Huffman

Used everywhere!

http://zlib.net

25 years old!

Compression In Practice 1

Reducing

Network

Traffic

Reducing Network Traffic

HTTP 1.1 has compression built in

Likely already available to you

Only GZIP widely supported

Google is pushing BROTLI

Hardware support available

Just turn it on!

Reducing Network Traffic

A closer look at the data

HTML, JSON, XML,… compress well

Human readable low entropy

Different from data in memory

Conversion wastes CPU / memory

Reducing Network Traffic

Data treatment options

Omit whitespace and comments

Separate static from dynamic data

Transfer static data once (or never)

i.e. replace Strings with IDs

Reducing Network Traffic

Use binary data formats

i.e. MsgPack, ProtoBuffers, Binary XML,…

Ditch HTTP, TCP/UDP have less overhead

If HTTP, consider WebSocket support

Beware: Base64 re-adds ~25%

Reducing Network Traffic

Faster compression options

Free: LZ4, Density

Commercial: LZO, Selkie, LZB16

Much (!) faster than GZIP

Lower to equal compression ratio

Reducing Network Traffic

Stronger compression options

Free: ZStd, BROTLI

Commercial: Mermaid

Faster decompression speed

Slower to equal compression speed

Equal to higher compression ratio

Reducing Network Traffic

Reducing Network Traffic

General hints

Make compression configurable

If on HTTP, turn HTTP compression off

Encrypt after compression

Beware compressor memory overhead

Make use of streaming, when possible

Reducing Network Traffic

Teh Future

HTTP/2 will be a binary protocol

Shared dictionaries

SDCH or home made (i.e. using ZStd)

BROTLI has a generic dictionary built in

Source: http://zstd.net

Compression In Practice 2

Shrinking

Download Size

Shrinking Download Size

Game asset downloads of all kinds

HTTP is usually a must (CDN)

HTTP overhead insignificant

HTTP compression not optimal

Data is rarely changed

 Use strongest compression available

Shrinking Download Size

Compression Options

Free: LZMA, XZ, LZHAM

Commercial: LZNA, Kraken, BitKnit

Slow to very slow compression

Very high ratios

Slow to fast decompression

Reducing Network Traffic

Shrinking Download Size

General Hints

Consider keeping files compressed locally

HTTP request delays and limits

Few big files > many small files

Use parallel downloads, if possible

Don‘t forget about decompression time

Compression In Practice

Creating

Small App

Packages

Creating Small App Packages

Why is it different?

Platform owners enforce package format

.apk, .ipa, .appx, …

Actually just .zip files

Built in compression far from optimal

 Compress before packaging

Creating Small App Packages

Textures

Best compression: JPEG (or similar)

Most pitfalls: PNG

Don’t use Photoshop output for final images!

Use compressed texture formats if possible

Don’t forget to apply regular compression

Consider custom image format

Reducing Network Traffic

Creating Small App Packages

Textures – The Future

RDO – Rate-distortion optimization

https://github.com/BinomialLLC/crunch

Transcoding between compressed formats

New compressed GPU formats

https://github.com/BinomialLLC/crunch

Creating Small App Packages

Geometry & Animation

Highly format dependent

Strip unneeded data

Tangents, Binormals, Extra Uvs,…

Lossy animation compression

Compress using a generic algorithm

Creating Small App Packages

Sound and Music

Use lossy compression

MP3, Ogg/Vorbis, BINKA, …

Depends on audio platform

Check back with provider

Consider mono for music

Creating Small App Packages

Config, Settings, Loca,…

Use generic algorithm

BROTLI is aimed at text

Consider binary formats

Convert at packaging time

Creating Small App Packages

Further complications

Certain files have fixed formats

App icons, splash screens, …

Exe is encrypted / signed

Consider interpreted code

Lobby platform owners?

Conclusions

Take care of your data from day 1

There is more than Deflate / Zlib

Smaller data makes people happy!

Resources

Yann Collet

Blog: http://fastcompression.blogspot.com/

LZ4: http://cyan4973.github.io/lz4/

ZStd: http://www.zstd.net/

Oodle

Official: http://www.radgametools.com/oodle.htm

Charles Bloom: http://cbloomrants.blogspot.com/

Fabian Giesen: https://fgiesen.wordpress.com/

http://fastcompression.blogspot.com/
http://cyan4973.github.io/lz4/
http://www.zstd.net/
http://www.radgametools.com/oodle.htm
http://cbloomrants.blogspot.com/
https://fgiesen.wordpress.com/

Resources

BROTLI

Standard: https://www.ietf.org/rfc/rfc7932.txt

Source: https://github.com/google/brotli

Misc

Rich Geldreich (LZHAM): http://richg42.blogspot.com/

Binomial: http://www.binomial.info/

LZO: http://www.oberhumer.com/

7z / LZMA / XZ: http://www.7-zip.org/

Density: https://github.com/centaurean/density

https://www.ietf.org/rfc/rfc7932.txt
https://github.com/google/brotli
http://richg42.blogspot.com/
http://www.binomial.info/
http://www.oberhumer.com/
http://www.7-zip.org/
https://github.com/centaurean/density

Contact Information

dietmar.hauser@sproing.com

https://github.com/Rattenhirn

@Rattenhirn

https://www.sproing.com

https://fb.me/sproing

@SproingGames

mailto:dietmar.hauser@sproing.com
https://github.com/Rattenhirn
https://www.sproing.com/
https://fb.me/sproing

