
Create a 20 Times Faster
Database Engine Optimized to
MMOGs

Shuichi Kurabayashi
Technical Advisor/Director of Cygames Research
Cygames, Inc.
kurabayashi_shuichi@cygames.co.jp

Summary

A simple in-house
database engine
tailored to MMOGs is
highly effective to provide
mobile MMOGs for multi-
millions unique users.

Legacy Full-Featured DBMS

Lock-Free I/O Operations

Simplified Relational Access

Minimal & Tailored DBMS

Authentication Security

Encryption Transaction

Data Mining Full SQL

Many Business Functions

Legacy Full-Featured DBMS

Lock-Free I/O Operations

Simplified Relational Access

Minimal & Tailored DBMS

Authentication Security

Encryption Transaction

Data Mining Full SQL

Many Business Functions

Game developers do not
use almost of those
business-oriented
functions

It is easy to implement
the minimal database
management system.

My message is:

Quick Introduction

Who are you?

What is Cygames?

What is problem?

Introduction: Who I am

• Technical advisor of Cygames, Inc.
Also Director of Cygames Research.

• Project Associate Professor at the
Graduate School of Keio University

Shuichi Kurabayashi, Ph.D.

Introduction: Cygames is one of the
largest mobile game developers in Japan

Known as the
developer of the wildly
popular card battle
game “Rage of
Bahamut”.

Recently released
“Shadowverse”.

Background: We have been providing
mobile MMOGs for 10 millions users.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

0 5 10 15 20 25

Th
e

n
u

m
b

er
 o

f
re

gi
st

er
ed

 u
se

rs

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

0 5 10 15 20 25

Th
e

n
u

m
b

er
 o

f
re

gi
st

er
ed

 u
se

rs

months after release

Background: Mobile gaming is an
important subject of DB Research

Tokyo Stock
Exchange

6,700/sec
(400,000/min)
transactions

Twitter

40,000/sec
messages at
peak.

Mobile game
(Japan)

100,000/sec
transactions
in average.

Problem Definition

● Modern MMOGs require
databases to support large-
scale availability, strong
consistency, and real-time
response.

● It is difficult to support such
capabilities efficiently by
using conventional systems.

…

MMOG

consistency

availability

real-time

Consistency

Availability
Partition-
tolerance

http://berb.github.io/diploma-thesis/original/061_challenge.html

CAP Theorem
● C: Consistency of data

● After data has been updated, if
something else references that data,
it will always be guaranteed that the
updated data can be referenced.

● A: Availability of the system

● No matter what the current
situation, the system will continue to
operate.

● P: Tolerance to network
partitions

● Data can be distributed.

Consistency

Availability
Partition-
tolerance

http://berb.github.io/diploma-thesis/original/061_challenge.html

CAP Theorem
● C: Consistency of data

● After data has been updated, if
something else references that data,
it will always be guaranteed that the
updated data can be referenced.

● A: Availability of the system

● No matter what the current
situation, the system will continue to
operate.

● P: Tolerance to network
partitions

● Data can be distributed.

Out of these three
guarantees, only two can
be fulfilled at a time.

Consistency

Availability
Partition-
tolerance

http://berb.github.io/diploma-thesis/original/061_challenge.html

Choosing Appropriate
System

CA: conventional
relational
database
systems, such as
MySQL, Oracle,
and SQL server,
strong
consistency

AP: SNS,NoSQL,
eventual
consistency

CP: Apache
Hbase, Hadoop,
BigTable,
Good for
analytics

Consistency

Availability
Partition-
tolerance

http://berb.github.io/diploma-thesis/original/061_challenge.html

CAP Theorem

CA is the most
important for
games, because
games require
strong
consistency and
fast response

AP: SNS,NoSQL,
eventually
consistency

CP: Apache
Hbase, Hadoop,
BigTable,
Good for
analytics

P
a
rt

it
io

n
in

g …
Live
Storage
Layer

MySQL
(master)

MySQL
(slave)

MySQL
(log)

replication

Cluster Set 1

Sharding

Cluster Set 2

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Cluster Set 3

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Cluster Set 32

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Fusion-ioFusion-io Fusion-io Fusion-io

Data Mining
Environment

Customer
Support DB

Analytics
Layer

Data Warehouse Systems and Statistical Analysis Systems

Typical Backend Architecture
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server
Web

Server…

Primitive Unit

P
a
rt

it
io

n
in

g

MySQL
(master)

MySQL
(slave)

MySQL
(log)

replication

Cluster Set 1

Fusion-io

Web Server

memcached

PHP

MySQL stores status data,
which are updated in a
real-time manner.

Main memory, memcached
stores static data shared
among all the PHP processes.

This bandwidth is the
most precious
resources.

P
a
rt

it
io

n
in

g …
Live
Storage
Layer

MySQL
(master)

MySQL
(slave)

MySQL
(log)

replication

Cluster Set 1

Sharding

Cluster Set 2

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Cluster Set 3

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Cluster Set 32

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Fusion-ioFusion-io Fusion-io Fusion-io

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server…

Combination of sharding （horizontal
decomposition） and partitioning （vertical
decomposition） brings high-level parallelism

P
a
rt

it
io

n
in

g …
Live
Storage
Layer

MySQL
(master)

MySQL
(slave)

MySQL
(log)

replication

Cluster Set 1

Sharding

Cluster Set 2

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Cluster Set 3

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Cluster Set 32

MySQL
(master)

MySQL
(slave)

MySQL
(log)

Fusion-ioFusion-io Fusion-io Fusion-io

Data Mining
Environment

Customer
Support DB

Analytics
Layer

Data Warehouse Systems and Statistical Analysis Systems

Data mining process including JOIN operations is carried
out by replica DBs that are replicated from the master
database asynchronously.

MySQL is working now. But…

Operation can be highly inefficient
and unprofitable

Not so
scalable

Large
maintenance
cost

Capacity per
machine is
not so high

RDB functionalities are appropriate for
C-A requirements, but it is too fat.

Overhead-1: Too Generic Structure

Overhead-3: Not utilizing modern hardware

Overhead-2: Not utilizing data access pattern in games

3 Overheads that decrease RDB’s performance

Overhead-1:
Too Generic Structure!

Internal Schema

Conceptual Schema

External
Schema-2

External
Schema-1

External
Schema-n

Data Model
supported
by Apps

Data Model
supported by DBMS

Data Model
supported by storage

CREATE TABLE(…);

TupleTableSlot *rec;

Overhead-1:Too Generic Structure!

● Planner (logical optimization)
● Rewrites queries for better

performance, by analyzing
queries as relational calculus.

● Executor (physical
optimization)
● Executes query primitives such

as relational algebras.

● Storage Subsystem
● Reads and writes disk storages.

Storage

Executer

Planner

I/O operations

Internal declarative
expression

Procedural expression
of relational algebra

SQL

Insert Update Select Real-time Consistency Query Type

Legacy Web
(e-commerce)

Small Small Large No Strong
Consistency

Dynamic
(mutable)

SNS(Large Scale
Web Apps)

Large Small Massively
Large

No Eventual
Consistency

Dynamic
(mutable)

IoT (Stream DB) Massively
Large

no Small Yes Application-
Dependent

Static
(immutable)

Mobile Game Small Massively
Large

Massively
Large

Yes Strong
Consistency

Static
(immutable)

Let’s resolve Overhead-2:
Not utilizing data access pattern in games

We faces technical requirements that are essentially
different from a conventional DBs

Let’s resolve Overhead-3:
Not utilizing modern hardware

The throughput performance becomes from
10 to 20 times faster, due to the multi-core
CPU with the high parallelism and a SSD
with the highly parallel access.

Solution

Query Pre-Compilation
(Immutable Query)

Lower Footprint
query processing

Lock-Free Thread
Scheduling

Static Query Analysis is effective
If we can know all the query to be processed,

we can apply holistic optimization by

analyzing their data access pattern and

implicit race condition among them.

CySQL
Immutable
Queries (Statically
analyzed and
compiled queries)

Query
Params

query

query

query

query

query

query

App
Server

Query
Params

Query
Params

Query
Params

Query
Params

Query
Params

Legacy Query Model

● Legacy query model cannot optimize
holistic query, because queries are
submitted dynamically.

Legacy DB

App
Server

SQL
SQL

SQL

Immutable Query

CySQL
Immutable
Queries (Statically
analyzed and
compiled queries)

Query
Params

query

query

query

query

query

query

App
Server

Query
Params

Query
Params

Query
Params

Query
Params

Query
Params

Deploy-Time Runtime

Immutable query model requires the all
queries to be defined at deploy time

Im
m

u
ta

b
le

Q

u
e
ry

SQL parsing and optimizing takes large cost

Storage

Executer

Planner

Apps

We can bypass the planner
and the executor, by
compiling SQL into
executable machine code.

Controlling transaction manager directly from
the application, we can achieve nearly 10
times faster performance than SQL

Query Processor Bypassing

SQL executable
SELECT *
FROM
table;

0100100100101
0011101010010
011101100011

Introducing query pre-compilation and
bypassing planner and executor

SQL pre-compilation Bypassing SQL modules

executor

storage

planner
storage

Lock-Free Transaction Processing

Legacy RDB embraces a lot of overhead of sync inside the
DB engine for lock mechanism. Each of those overheads
is small, but small overhead will be accumulated, so each
overhead is the cost which can't be ignored.

Row-level lock

Snapshot
creation
for MVCC Buffer lock

Can we realize Lock-Free?

By using the thread scheduling specialized
in the data access pattern specific to the
game, multiple threads read/writes
databases without locks.

Database

query

query

I know
everything

about
queries

• race condition,
• dependency,
• priority
between queries

Basic Concept of Lock-Free Thread Scheduling
Query-1

Job Queue

Job

Job

Job

Job

Job

Job

Job

Job

Job

JobJob

Depends on

Depends onJob

The scheduler recognizes dependency
between jobs. It re-orders jobs according to
the those race conditions and atomicity.

Execution
Phase

Queueing
Phase Job

Worker Thread Pool

One query
constructs one
queue.

Gate Keeper

Query-2
Job Queue

Query-3
Job Queue

Query-n
Job Queue

In the immutable query model, DB
engine can schedule threads perfectly
without synchronization lock.

● Because the DB engine can analyze race
condition between queries statically.

● The thread scheduling strategy is easy:
“Do not schedule the queries that cannot
be executed simultaneously.”

The number of CPU cores are increasing for
both energy and performance efficiency.

2 2

4

8

10

2010 2011 2012 2014 2015

T
h

e
 N

u
m

b
e
r
 o

f
C

o
r
e
s

image source:
https://www.qualcomm.
com/sites/ember/files/st
yles/optimize/public/co
mponents/one-column-
hdi/bottom/chip-tiny-
625_1.png?itok=RfSGm
x-s

image source:
http://mediatek-
helio.com/x20/img/X20.
png

Parallelism in I/O Devices

Not so parallel Highly Parallel

NAND

NAND

NAND

C
o
n
tro

lle
r

HDD SSD

Parallelism in I/O Devices

Not so parallel Highly Parallel

NAND

NAND

NAND

C
o
n
tro

lle
r

HDD SSD

Only this
parts
(head) can
read/write
data

Every chip
can
read/write
data in
parallel

Comparison of the prototype and MySQL:
UPDATE command

3 6.3 10.4
74

144

291

0

50

100

150

200

250

300

350

500000 1000000 2000000

T
h

r
o

u
g

h
p

u
t（

s
e
c
）

Update Count

Prototype MySQL

Executing UPDATE operations by using a
randomly generated value.

Theoretical Conclusion

Increase the number
of threads as many
as you can

Implementation!

● Here I introduce a quick
implementation method of read-
only database engine.

Use Case:
Fast
Search
Engine lo

g
ic

a
l c

o
n
ju

n
c
tio

n

logical disjunction

https://shadowverse-portal.com/

Query type
detection

Those are sub-queries corresponds to the immutable
queries

Query type
detection

When the target data is fixed, we can execute those
sub queries before the runtime.

Data Structure

…

…

…

…

…

Attributes

Queries

Query
Results

Each block represents an
array that stores results
of the specific queries
applied to the specific
attributes.

Conclusion

• You can implement tiny RDB
within a hour.

• Increase the number of
threads as many as you can

Recommended Books

● Database Systems: The Complete Book
(2nd Edition) 2nd Edition by Hector Garcia-
Molina, Jeffrey D. Ullman, Jennifer Widom

● Introduction to Algorithms, 3rd Edition
(MIT Press) 3rd Edition by Thomas H.
Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein

