
Deterministic Simulation
What modern online games can learn from the Game Boy

David Salz
CTO, Sandbox Interactive

Who am I?
 CTO, Co-Founder of Sandbox Interactive

 15 years in the industry

 Albion Online:

 Sandbox MMORPG

 Cross-Platform (Windows/OSX/Linux/Android/iOS)

 Player-Driven Economy (everything is player-crafted)

 Strong focus on PvP + Guilds

 Currently in Beta w/ 120.000+ „founding“ players

 Using Unity Engine

Agenda
 Deterministic Simulation – A short reminder

 How RTS-style games use it

 How MMO-style games can still use it!

 The pitfalls: How to do it and what to avoid

 A few tricks with deterministic randomness

 A few examples from Albion Online

Gameboy Multiplayer
 Link cable had very limited

throughput

 … as in: a few bytes per

frame and player

 Syncing complex game state

is impossible

 Instead: used like a controller cable! Deterministic
simulation on all devices

 Frame updates are synced (effectively „lock-stepping“)

 Still used on DSi and 3DS

Deterministic Simulation?
 This should be an old hat, but…

 Deterministic: same input same output

 Input[i] × State[i-1] = State[i]

 where i is the simulation step number

 Given State[0] and same sequence of inputs Input[1..n]

 … all clients will produce same Sequence State[1..n]

S[0] S[1] S[2] S[3]

I[1] I[2] I[3]

Deterministic Simulation!
 This is cool because:

 Only need to send State[0] and Inputs through network!

 Only Inputs if State[0] is known

 Can save replays by saving only Inputs!

 You can debug replays of bugs!

 Difficulties:

 one mistake and the clients „desync“

 must be independent of frame/thread timings

 requires lock-stepping for online games

 Late join requires you to send State[n]

 Dead Reckoning:

 Extrapolate future state of an object based on a known

state and current behavior

 Example: movement of a mob TimeStamp: T510
Positon: 210, 425
MoveTarget: 190, 415
MoveSpeed: 2/s
AttackTarget: MadDave

Predicted
current position

Known, past
position

Deterministic Simulation vs. Dead Reckoning

Deterministic Simulation vs. Dead Reckoning

 But: this is only a prediction! May be incorrect and client may
act on incorrect info!

 May have to correct state given new information!

T2: 504

Timestamp T0
Health = 500, +2/s

T3: 506

T4: 508

T5: 510

Timestamp T4
Health = 400, +10/s

T6: 420

Wrong!

Wrong!

Network
Delay: 2

Lock-stepping (1)
 This is how RTS games do it

 Basically everything from Age of Empires to Starcraft2

 Collect input from all players, send it to all players

 Simulation step i can only happen when input from all players for step i has

arrived (stepping is „synced“ or „locked“

 Collect input a little earlier to account for ping

 Allows high unit count with super-small bandwidth!

Lock-stepping (2)

Simulate S[1]

Collect I[3]

Simulate S[2]

Collect I[4]

Simulate S[3]

Collect I[5]

Client 1 Client 2Server
(may run on a Client)

Collect I[3] from all

Send I[3] to all

Collect I[4] from all

Send I[4]to all

Simulate S[1]

Collect I[3]

Simulate S[2]

Collect I[4]

Simulate S[3]

Collect I[5]

Lock-stepping (3)
 Problems:

 Slowest player’s ping will be felt by all players

 Worst case: „waiting for player“

 Input delay is noticeable

 Usually covered by animation, audio prompt etc.

 Difficult to handle drop-out / late join

 only suitable for very limited number of players!

Actor-based determinism (1)
 Lock-stepping is not suitable for MMOs!

 Cannot wait for players (worst ping = everyone's ping!)

 Single player cannot „see“ full game state (just too big)

 Everyone does a „late Join“

 BUT: can still use deterministic simulation for a single
actor

 … as long as behavior depends only on actor itself

 example: roaming behavior of a mob (later)

 Can mix with dead reckoning

 Also great for visual stuff w/o gameplay influence

Actor-based determinism (2)

Farm Animal

- roaming around
- just eye candy!

MOBs

- gameplay relevant
- attackable
- can attack
- roaming around

Pitfalls & Common Mistakes
 Uninitialized variables, dangling pointers etc.

 add an unwanted random element to the simulation

 Undefined behavior of C++ or library functions

 Random number generators behave differently across library versions! (Roll your
own!)

 Use fixed simulation timing!

 simulation MUST NOT depend on frame timing

 but rendering, animation MUST…

 Need a clean separation of simulation and presentation

Separation

ObjectFactory ObjectViewFactory

Object

+Position
+…

+RequestAction()

ObjectView

+Renderer
+AnimationCtrl

+HandleInput()

destroyed

changed

…etc..

created

Object

+Position
+…

+RequestAction()

Server Client Unity-Client

Interest-
Management

changed

…etc..

obj-enter

obj-leave

The trouble with float (1)
 IEEE standard: only +, –, *, /, sqrt guaranteed to give same results

everywhere

 not: sin, cos, tan etc. (different on different CPU types)

 CPU can store numbers in float or double format

 how intermediate results are stored is often unspecified (depends on
compiler)

 x86: per-thread settings for precision, exceptions, rounding, denormal support

 … check the manual of your target CPUs…

 different feature sets (SIMD sets like MMX, SSE etc.)

The trouble with float (2)
 You can make floats work if…

 … you stick to +, –, *, /, sqrt (write the rest yourself)

 … you can configure compiler behavior (intermediate precision, instruction set
used)

 … you can control CPU behavior (precision, rounding etc.)

 Best: one target CPU type, same binary for all clients

 You are in trouble if…

 … you need to support a JIT environment

 … you need to target different CPUs

 … you need to use different compilers

Fixed Point numbers (1)
 Idea: create fractional number type based on integers

 … and use only this in (deterministic) simulation

 again: clean separation of gameplay / rendering is

important

 e.g. 110.010
= 1*22 + 1*21 + 0*20 + 0*2-1 + 1*2-2 +0*2-3

= 1*4 + 1*2 + 0*1 + 0*0,5 + 1*0,25 + 0*0,125

= 6,25

Deterministic Randomness
 Random number generators are deterministic

 Provided same initial seed, will produce same random
sequence

 Many copy-paste-ready implementations exist
 E.g. Mersenne Twister, WELL, XORshift

 (Wikipedia has a list!)

 Watch out for:
 period length

 memory footprint

 speed

 warmup period

 But can we „seek“ inside the random sequence?

Cryptographic Hashes
 Cryptographic Hash functions can be used as random number sources!

 Hash Function: converts data into unique integer

 i.e. byte[] int

 … seeks to avoid „collisions“ (i.e. different data should produce hash;

meaning equal distribution of hashes)

 Cryptographic hash function: not easily reversible

 i.e. output must appear random!

Seekable random sequences
 Cryptographic Hashes can be used to build seekable

random number generators!

 because Hash(i) is random, even if i = {0,1,2,3,4,5… n}

 Note: you can do this with timestamps, coordinates,

… anything really!

Seekable random sequences

for(int i=0; i<1000; i+=2)

{

DrawPoint(Hash(i) % 300, Hash(i+1) % 300)

}

Adler32 MD5

Example: Mob Roaming Behavior
 given:

 Mob „Home“ position

 Roaming Radius

 repeat:

 pick random point inside roaming circle

 walk to random point (stop if path is

blocked)

 wait for random time (between a given min

and max)

StartNextCycle(startTimeStamp, startPosition)

{

init RNG with startTimeStamp

pick „random“ moveTarget point

if(there is a collision on the way there)…

… the collision point is the moveTarget

calculate the walkTime to moveTarget

pick a random waitTime

endTimeStamp = startTimeStamp + walkTime + waitTime

}

Render(nowTimeStamp)

{

while(nowTimeStamp > endTimeStamp)

StartNextCycle(endTimeStamp, moveTarget)

if(nowTimeStamp < startTimeStamp + walkTime)

position = LERP(startPosition, moveTarget)

else

position = moveTarget

}

Live Demo!

Takeaway
 Deterministic Simulation can greatly reduce network traffic in

online/multiplayer games

 RTS-style games use fully deterministic gameplay with lock-stepping

 MMO-style games can still use actor-based deterministic simulation

 May have to use fixed point instead of float

 Hash functions are great for „randomness“ (including seekable random

sequences!)

References
 1500 Archers on a 28.8

 http://www.gamasutra.com/view/feature/131503/1500_archers_on_a_288_network_.php

 Floating-Point Determinism
 https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/

 List of random number generators
 https://en.wikipedia.org/wiki/List_of_random_number_generators

Thank you!
Questions / Comments?

david@sandbox-interactive.com

We are hiring!

https://albiononline.com/en/jobs

