clo/@

BETTER DEVELOPMENT THROUGH

SCIENCE
HOW ALIENS, ODYSSEUS, AND TOYOTA CAN
HELP IMPROVE PRODUCTION

LN

JUSTIN FISCHER
FOUNDER, AGENCY PRINCIPLE

GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

“Better Development Through Science: How Aliens, Odysseus, And Toyota Can Help
Improve Production" by Justin Fischer is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.



http://www.breakingthewheel.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

A PREFACE...

This presentation is about how to improve production efficiency and predictability,
and eliminate waste. In order to successfully communicate the high-level concepts, |
need to first establish some fundamentals.



WARNING!! MATHS AHEAD!!

That means | need to give you a crash course in operation science. So:

* Don’t be afraid of math

* Don’t get too hung up on terminology

* Focus on the high-level takeaways and feel free to email me if you are confused
about anything!



HANG IN THERE!

Hang in there! The nuts & bolts of the first half is to set the stage for the pay-off of
the second half.



Because they say to always start presentations with stories...



[Insert tacky Beavis & Butt-Head reference here]



OVER TIME...

PROCESS

HOW TO BUILD
A CAMPFIRE

TINDER KINDLING FUEL

< | B b
b b4

What was once an exciting discovery, over time, iteration, and repetition, becomes
something rote and predictable.



ALL ACTIVITIES FALL ON A SPECTRUM

¥

P

PROCESS DISCOVERY

There is no mystery to boiling water — it’s pure process. On the other hand, there are
lots of discoveries to be made at the cutting edge of physics!



FEW ACTIVITIES ARE AT THE EXTREMES
PROCESS Most activities are  p|SCOVERY

l e
Ny

Few activities are pure process (devoid of any experimentation or discovery) and
even fewer are pure discovery (totally new and based on no prior knowledge). Even
cutting edge physics experiments are built on a foundation of established science.

Cooking is a great example of an activity that involves both process and discovery.



DISCOVERY BECOMES PROCESS

As with fire, all activities start on the discovery end of the spectrum and move
towards the process end. This applies both globally (somebody had to have been the
first person to boil water) and individually. The first time you make your own pasta
sauce, there was a lot of discovery. But, by the 1000t time...

10



OUR BUSINESS IS DISCOVERY

YOU
ARE
HERE

PROCESS {mmmmsrmmsicammnan) D|SCOVERY

11



V!

_+FIND HE FUN®
™




“AYE, THER

E’S THE RUB”

13



Discovery, by definition, involves the unknown. And the unknown brings with it risk.

14



VARIANCE

Or as data and operation scientists call it, “variance.” From the perspective of
operation science, statistics, finance, etc, the terms “risk” and “variance” are
essentially interchangeable.

And that variance is the source of so much of our pain when we try to manage long
term projects and forecast development.

15



D AL RAN

SCO

We can’t just abandon discovery! It’s what makes our jobs fun!

\

16



IF WE ACKNOWLEDGE

TWO FACTS




Variance Compounds.O quential
Activities

If every activity, A-E has a distribution of outcomes of 1 throgh 5, then the total
distribution of outcomes to get from the start of A to the end of E is 5 through 25.

18



NOTHING WE DO IS PURE

DISCOVERY

Even the most avant garde, experimental, in the weeds, exploratory design is still
supported by some degree of process (spec’ing features, coding them, building them,
running QA passes)

19



That’s why we need all this stuff!

20



WE SHOULD MAKE PROCESSES
 Efficient
* Consistent

 And, whenever possible, automated

21



22



Minimize Overall Variance

EG, if we can shrink the outcome distributions of B and D from 1-5 down to a known
outcome of 1, the distribution total outcomes shrinks from 5-25 to 5-17

23



Maximize Our Ability To'A
Variance

EG, if we shrink narrow the possible outcomes of B and D to just 1, then the
combined variance of A, C, and E could increase by 8 without changing the overall
outcome distribution of 5-25.

24



ROADMAP

* Quick Bio
Process Flow Fundamentals

Capacity Charts
Lean Production for Games

Closing Thoughts
Q&A

25



WHO AM |?

- Started in the industry in Jan 2007 mﬂm
Guilﬁgar:y o L E B Dl

P
L, ¥~
)

26



WHO AM 1?
« Earned MBA June, 2016

* Consulting

* Agency Principle

* BreakingTheWheel.com

27



MY FAVORITE MOVIE:

A LHENS

Maybe it’s cliché, but Aliens is my favorite movie ever.

28



At the climax of the movie, Ripley and Newt stumble right into the heart of the nest
and meet the Queen

29



And the Queen has this gross, slimy, bulbous sack through which she deposits face-
hugger eggs on the hive floor

30



HOW MANY EGGS DOES SHE HAVE IN

THAT THING?

31



LET’S FIND OUT!




So, here’s our Queen...

33



Let’s assume that, on average, the Queen lays 7 face-hugger eggs a day

34



Let’s also assume it takes the queen 5 days, on average, to gestate a single egg

35



If that is the case, the only way the Queen can sustain a 7-egg-a-day throughput with
a 5-day per egg turnaround time is if there are 7 eggs in each phase of gestation

36



THEREFORE, ON AVERAGE, THE
QUEEN HAS EGGS IN THE

SACK

37



IN OTHER WORDS

» Average egg /nventory (l)...

» Equals average egg Th~oughput (R)...

* Multiplied by the average Flow /ime to
produce a single egg (T)...

38



OR, MORE SIMPLY...

[=RT




THIS IS KNOWN AS “LITTLE’S LAW”

40



THIS IS KNOWN AS “LITTLE’S LAW”
« |=RT
* R=IT
- T=I/R

* You only need two of the values

41



-AAAAAAA

Flow 7ime 5/t

R
Th~oughput
nventory

(Belaboring the point to make sure it’s clear)

For any ongoing process (assembling cars, manufacturing cans of soup, or generating

game assets):

* The average amount of things currently being processed (the inventory)...

» ...is equal to the average rate at which things come out of the process (the
throughput)...

* ..multiplied by the average time to process a single thing (the flow time)

42



('nventory) = (Th<oughput) x (Flow 7ime)

I will be brining this equation up contextually throughout the slides

43



HOW CAN YOU DETERMINE THOSE

VALUES?

44



(/nventory) = (Th~oughput) x (Flow ime)

Imagine that inside the egg sack is a complex sequence of ‘activities’ that are all
necessary to generate a complete face hugger egg

45



(/nventory) = (Th~oughput) x (Flow ime)

Leg Attachment Drool Gland
(60m) Gestation (90m)

Egg-ception Anger Induction Flap Sealing
(15m) (20m) (45m)

» “Critical Path”
Single Longest Path
“Critical Activities”
Cumulative Flow Time of Critical Path = “Flow Time” for 1 Batch
Flow Time Denoted “T”

One pathis clearly longer than the others in terms of cumulative time. This is the
“critical path”.

46



(/nventory) = (Th~oughput) x (Flow ime)

“Bottleneck”
Single longest activity (irrespective of critical path)

Throughput of Bottleneck = Throughput of Process
Throughput denoted “R”

Egg Laithing
(120m)

Let’s also notice that one activity is distinctly longer than the others. This is the
“bottleneck.”

47



IN OTHER WORDS...

« Critical Path determines Flow Time (T)

- Bottleneck determines Throughput (R)

(/nventory) = (Th~oughput) x (Flow ’ime)

48



A MORE RELEVANT EXAMPLE...

49



Ref Art Cﬁﬁg‘;”t( cgr?gt High- M Low-Poly M Rigging
1d de de Poly (5d) (3d) (1d)

Combat
Anim

Cinema
Anim

9d
(5d) Facial

Casting Anim
2d

(2d)
VO Rec Dialog
(2d) Triggers
3d

Here is a hypothetical pipeline for character asset creation

50



THIS PIPELINE SEEMS COMPLEX, BUT

OPERATIONS SCIENCE GREATLY
SIMPLIFIES THE ANALYSIS

51



Pencil Color . . Combat
Ref Art High- Low-Poly Rigging .
Cogcc:iept( Coggept Poly (5d) (3d) (1d) Agém

Cinema
Anim

9d
(od) :
Facial QA (5d)

Casting Anim
2d

(2d)
VO Rec Dialog
(2d) Triggers
3d

This slide automatically transitions to the next to provide contrast between overall
pipeline and critical path

52



Pencil Color
Re1f dArt Concept( Concept
2d 3d

Here is our critical path

High- Low-Poly Rigging
Poly (5d) (3d) (1d)

Cinema
Anim
9d

53



THE CRITICAL PATH = 29 DAYS

» Branches from Rigging to Cinematic
Animations and on to QA

» [ =29 days

(/nventory) = (Th~oughput) x (Flow ’ime)

We therefor should expect that an average character takes 29 days to complete.

54



Ref Art Ciﬁgg”t( cgr?gt High- [ Low-Poly ll Rigging
1d de de Poly (5d) l  (3d) (1d)

Cinema
Anim

9d

This slide automatically transitions to the next slide for visual effect

55



Here is our bottleneck

Cinema
Anim

9d

56



CINEMATIC ANIMATIONS = BOTTLENECK

« Cinematic animations takes 9 days, on
average

» =1 character every 9 days (or 1/9 of a
character per day), on average

(/nventory) = (Th~oughput) x (Flow ’ime)

Therefore, we should expect that a complete character will emerge from the process
every 9 days on average (or, we can think in terms of 1/9t of a character per day on
average).

57



WITH LITTLE EFFORT, WE ESTIMATED:

* Average time to complete a character from
scratch

* Expected time before the first character is
In-game

* Average rate of subsequent characters

58



ORIN VISUAL FORM...

(/nventory) = (Th~oughput) x (Flow ’ime)

* Blue bars are the time per character
* 1/Ris the time between characters
* Orange bar is the total time for all 4 characters

59



AN IMPORTANT CAVEAT...

60



THEORETICAL VS. ACTUAL

» Critical path is the Theoretical Flow Time (TFT)
* Flow Time if there is zero downtime:
* Instant transfer from one process to the next

» No waiting for any process

* No pausing for any process

If you determine your flow time by adding the activities in the critical path, you have
a theoretical flow time — IE the average flow time if the in-process inventory never
has to wait.

61



THEORETICAL VS. ACTUAL

« Actual flow time accounts for “wait time”
» Theoretical Flow Time + Wait Time = Flow Time

» Examples:

* Queues
» Handoffs
* Bathroom breaks

Anything that causes in-process inventory to stop being processed is Wait Time.

62



FLOW TIME EFFICIENCY

* Flow Time Efficiency is the ratio of Theoretical
Flow Time to actual Flow Time

« TFTIT = FTE

» How much time your assets are languishing

* FTE = 78%: assets spend 22% of their time not
doing anything

63



FLOW TIME EFFICIENCY

* Flow Time Efficiency < 1

* Ifitis ever>1, TFT is wrong

* The closer you get to 1, the more efficient
your process is

If you have an actual flow time that is less that your theoretical flow time, you high-

balled the theoretical. IE, you over-estimated how long some or all of your critical
activities take. You can’t do better than a process where nothing has to wait.

64



WHAT IF YOU DON'T KNOW THE
AVERAGE TIME TO COMPLETE THE

ENTIRE PIPELINE, OR ANY SINGLE
ACTIVITY?

65



LITTLE’S LAW TO THE RESCUE

* |f you know /< and / for the process, you
can back into !

 Toroec =1

Process

IR

Process’” *Process

 This is the actual flow time

(/nventory) = (Th~oughput) x (Flow ’ime)

66



IT ALSO APPLIES TO ACTIVITIES

* If you know /< and [ for any individual
activity (or sequence of activities), Little’s
Law also applies:

* Tactivity = Inctivity/ Ractivity

(/nventory) = (Th~oughput) x (Flow ’ime)

To, emphasize the flexibility of Little’s Law: it can apply to any level of granularity - the
whole pipeline, continuous sections of the pipeline, or individual processes

67



OPTIMALLY STAFFING PIPELINES
USING CAPACITY CHARTS

68



YOU KNOW T & R...NOW WHAT?

* You have estimated Th/<oughput and Flow
ime

* You can use a “capacity chart” to plan
resource assignments

(/nventory) = (Th~oughput) x (Flow ’ime)

69



A SIMPLIFIED PIPELINE

Combat
Anim
8d

Color , - Facial
High- Low-Poly Rigging .
Coggept Poly (5d) (3d) (d) Agém QA (5d)

Cinema
Anim
9d

I’'m simplifying the previous pipeline for the sake of clarity. But a capacity chart would
still work on the more complicated pipeline from the last example.

70



EXAMPLE CAPACITY CHART

Go into Excel and create a simple 7-column chart (or just download a copy from the
link at the end of the slides, before the Appendix)

71



STEP 1: LIST EVERY ACTIVITY

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim
Face Anim
Cine Anim
QA

First, list every activity in the pipeline, critical path or otherwise. Order doesn’t
matter.

72



STEP 2: LIST FLOW TIME FOR 1 ASSET

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim
Face Anim
Cine Anim
QA

Next, list the average time it takes to complete a pass of each activity for a single
asset

73



STEP 3: CALCULATE THROUGHPUT

1/3=0.333
116=0.2
1/3=10.333
11 =1
1/8=0.125
12=0.5
1/9=0.111
1/6=0.2

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim
Face Anim
Cine Anim
QA

3
5
3
1
8
2
9
5

Next calculate the single asset throughput (the rate at which single units emerge from
the activity) by taking the inverse of the activity time.

To explain how this works, if you take Little’s Law and assume Inventory = 1 (because
we are talking about the flow time for a single unit), then Flow Time and Throughput
are reciprocal:

Inventory = Throughput * Flow Time

Flow Time = Inventory/Throughput

Inventory =1

Flow Time = 1/Throughput

74



STEP 4: LIST TEAM MEMBERS/ACTIVITY

Concept 1 Person
Hi-Poly
Lo-Poly
Rigging
Com Anim

3 People
2 People
1 Person
4 People
Face Anim 1 Person
Cine Anim 2 People

QA

a1 © N 0 -, W O W

2 People

Now, list the number of people you have performing each activity



STEP 5: COMBINED THROUGHPUT

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim
Face Anim
Cine Anim
QA

3
5
3
1
8
2
9
5

Multiply the throughput per activity by the number of people performing the activity
to calculate the combined throughput for that activity. This is the collective average
throughput of all of the people handling the activity.

76



STEP 6: FIND PROCESS THROUGHPUT

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim
Face Anim
Cine Anim
QA

3
5
3
1
8
2
9
5

0.333
0.6
0.666
1

0.222

05
0.5 Awess Throughput =

0.222 Lowest Activity Throughput
04

Identify the activity that has the lowest combined throughput. As established in the
Alien Queen example, the activity (or activities) with the lowest throughput — the
bottleneck(s) — dictate the throughput for the entire process.

77



STEP 7: CALCULATE UTILIZATION

-66.67%
37.04%
33.33%
22.22%

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim

-0.222 -

Combined
Throughput

44.44%
Face Anim 44 .44%
Cine Anim

QA

100%
~55.56%

3
5
3
1
8
2
9
5

Finally, divide the process capacity by each individual combined throughput to
calculate the respective utilization per activity. This number tells you how much of a
given team’s bandwidth this process will consume.
* Examples:

* This process will consume 2/3’s of our concept artist’s bandwidth

* And 1/3 of our low-poly modelers’ collective bandwidth

* And 100% of the cinematic animators’ collective bandwidth
It’s important to note that the higher the percentage, the closer to pool is to being a
bottleneck.

78



STEP 7: CALCULATE UTILIZATION

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim
Face Anim
Cine Anim
QA

a1 © N 0 -, W O W

Any pool with 100% utilization is a bottleneck.

66.67%
37.04%
33.33%
22.22%
44.44%
44.44%

-100%

55.56%

0.222

79



THE TAKEAWAY

 The number of resources impacts Th~oughput
« 100% utilization = bottleneck!

 The way you staff a pipeline can shift the
bottleneck

« Shifting the bottleneck changes the Th~oughput
» But not the Flow /ime!

On that last bullet: don’t fall for the “one month baby” trap — you can’t throw a ton of
people at the same asset and get it faster. You can divvy up a list of animations
amongst animators to some extent, but you cant throw three character modelers at
the same model and get it done in a third of the time.

80



WHAT HAPPENS IF WE ADD A
RESOURCE TO THE BOTTLENECK?

81



CURRENT BOTTLENECK: CINE ANIM

Concept
Hi-Poly
Lo-Poly
Rigging
Com Anim

Face Anim

Again, here is the same capacity chart, with cinematic animations as the bottleneck.

Let’s add one team member to the cinematic animation pool.

66.67%
37.04%
33.33%
22.22%
44.44%
44.44%

55.56%

82



BOTTLENECK: CINE ANIM & CONCEPT

55.56%
50.00%
Rigging 33.33%
Com Anim : : : 66.67%
Face Anim 66.67%

83.33%

Two things happened:

1) While cinematic animation is still the bottleneck, throughput has increased to 1/3
of a character per day. In turn, overall throughput has also increased to 1/3 of a
character per day

2) Concept art is now also a bottleneck, so we now have two bottlenecks. We aren’t
worse off because we have two bottlenecks — we’re still moving faster than
before. But it means we cannot improve throughput by adding a single person.



IF WE ADD ANOTHER RESOURCE?

55.56%
50.00%
Rigging 33.33%
Com Anim : : : 66.67%
Face Anim 66.67%

83.33%

For example, if we add another cinematic animator, two more things happen:

1) Cinematic animation is no longer a bottleneck, and now has some spare capacity
(utilization < 100%)

2) But Concept art still is, so overall throughput is still capped at 1/3 character/day;
IE, that new resource did not improve throughput



WHAT ABOUT ONE MORE?

55.56%
50.00%
Rigging 33.33%
Com Anim : : : 66.67%
Face Anim 66.67%

83.33%

And if we add yet another animator, throughput is still locked at 1/3 of a character
per day. All that the additional resource accomplished was creating spare capacity for
the animators, which is not the most efficient use of money.



BUT, IF WE ADD ONE TO CONCEPT ART

Activity Flow Time | Throughput | Team Combined | Process Team
For a Single | Fora Single | Members Throughput | Throughput | Utilization
Asset Asset

Rigging
Com Anim

Face Anim
Cine Anim
oA

But, if we add a concept artist:

1) The bottleneck now shifts to QA

2) Process capacity increases to 0.4 characters/day

3) The concept artists and cinematic animators have spare capacity

60 67%
60.00%
40.00%
80.00%
80.00%

86



TAKEAWAY: THE WEAKEST LINK

* Pipeline is only as fast as the lowest
Th<oughput

» Adding resources can shift the bottleneck
between activities

87



TAKEAWAY: THE WEAKEST LINK

» Add resources to the chart one at a time so
you can catch when & where the bottleneck

MOVES

* Adding resources to non-bottleneck
activities won't help overall Th<oughput

If we had all three cinematic animators at once, we would have seen that the
bottleneck moved, but we wouldn’t have know when it move. Thus we wouldn’t have
known which additional team member/s only created spare capacity.

88



THERE IS ALWAYS A BOTTLENECK

« Some activity or activities will have the
lowest capacity

* Your goal is not to eliminate bottlenecks

* Secure a Th~oughput that meets your
schedule

It’s impossible to eliminate all bottlenecks. There will always be a slowest resource.

89



SPECIAL CASES

* The capacity chart example assumes:
* One activity per team member
- Staff in a pool have the same average speed

» Each team member is fully dedicated

* Team members start & end at the same time

IE, the example takes a very clean, simplified view of the world.

90



SPECIAL CASES

« If any of the above is not true, you need to
use slightly different calculations

 See Appendix

The modified calculations are still just arithmetic. Nothing super-complicated. See
Appendix!

91



NOTES ON SPARE CAPACITY

92



NOTES ON SPARE CAPACITY

* |t can be tempting to ramp everyone to
100% utilization

* This Is counter-productive
» Recall: 100% utilization = BOTTLENECK!!

93



NOTES ON SPARE CAPACITY

* Your bottleneck is the deciding factor on
Th<oughput

* Your goal - make sure the bottleneck is:
* Always working

* Never waiting

94



NOTES ON SPARE CAPACITY

« Keeping everyone 100% busy may make
you feel good

* You are creating more bottlenecks

« Artificial bottlenecks might not be available
to support actual bottlenecks

* Example: if the actual bottleneck (example: the cinematic animators) runs out of
work, and upstream processes (example: the riggers) can’t pass it more work
because they’re tied up with busy-work, the bottleneck will stop moving. Thus
your overall throughput will slow down.

95



NOTES ON SPARE CAPACITY

* |E, you are creating a scenario where the
actual bottleneck is held up by the artificial
bottlenecks you created by being a task
master

* You are failing your primary goal of keeping
the bottleneck moving

96



NOTES ON SPARE CAPACITY

- By all means, take targets of opportunity

* But don’t keep people busy just for the

sake of keeping them busy

97



NOTES ON SPARE CAPACITY

* The best use of spare capacity is to
alleviate the bottleneck

* |f team members with spare capacity can
also do bottleneck work, that's the best
place to apply their talents

98



STORY TIME!

Time for a palate cleanser!

99



BETWEEN SCYLLA & CHARYBDIS

100



BETWEEN SCYLLA & CHARYBDIS

* Book XlI of The Odyssey
* Odysseus must sail through

the Straight of Messina

101



BETWEEN SCYLLA & CHARYBDIS
On one side: Scylla. On the other: Charybdis

Scylla is a six-headed serpent who will devour 6 men from any boat that passes, one
with each head. On the other side is Charybdis, and underwater beast who creates
whirlpools. She might not catch you, but if she does everyone on the boat dies.

102



BETWEEN SCYLLA & CHARYBDIS
Definitely lose 6 men, or possibly lose all of them

This is Odysseus’ choice

103



THE SCYLLA-CHARYBDIS DILEMMA

* This is a classic crisis - a test of values

 Odysseus must choose:

* The needs of the many over the needs of
the few, or...

* All for one, one for all

104



THE SCYLLA-CHARYBDIS DILEMMA

* In modern investment terms:

» Stick with certainty to minimize costs

* Or accept risk to maximize potential
gains

In the story, Odysseus picked Scylla...but didn’t tell anyone on his boat what would
happen.

105



MOVING BEYOND ART

106



LITTLE’S LAW FOR FEATURES

- Mathematically speaking, Little's Law
applies to any sequential process flow

* This includes feature development
* ...with one obvious caveat...

107



AYE, THERE’S THE RUB REDUX

» Feature design is more variant (discovery!)
* Scope
* Bugs

» Uncertainty

 Human error

108



VARIANCE

* |s a measurement of risk
 Can be understood mathematically
 Adds complexity to forecasts

* Increases costs (expected and actual)

109



VARIANCE

« Operations science is largely concerned
with minimizing the presence and impact of
variance

* One path to reducing variance is
eliminating waste

110



WHO HAS ELIMINATED PRODUCTION

WASTE BETTER THAN ANYBODY
ELSE ON THE PLANET?

111



EAST VS. WEST

« 1948
+ Japan is in economic ruin; =

* Toyota is competing with
the world’s new economic super-power

* How can it possibly succeed?

112



THE TOYOTA PRODUCTION SYSTEM

* Focused on eliminating waste at all levels:

* Inventory
* Defects

* Meetings
* Movement

113



THE NET EFFECT

- Toyota is now the world’s largest car
company

« Established a reputation for high quality

» TPS came to be known, more generically,
as “Lean Production”

114



THE MORAL OF THE STORY

* This isn’'t some squishy academic concept
 Toyota made A LOT of money

* And established a reputation for high quality

 While competing with companies that had
greater access to capital and resources

115



SCYLLA VS. CHARYBDIS REVISITED

« Leanis a “Scylla” approach to management

 Spend some time now in order to avoid possibly
losing a lot of time to waste later

* Minimize outcome variance

* Maximize control

Much like Odysseus, implementing lean means choosing the known cost in order to
minimize risk of unknown costs. There was no risk with Scylla: you lose 6 sailors, no
more, no less.

116



WHEN CONSIDERING LEAN
* Don't just focus on what it COSTS
* Think about what it SAVES

117



AN OUNCE OF PREVENTION:
LEAN PRODUCTION

118



THE ELEMENTS OF LEAN

* POKA-YOKE
* KANBAN

+ JIDOKA
« MUDA
* HEIJUNKA

RAAT
Bk

B &1t
T

119



POKA-YOKE

RAAT




POKA-YOKE (7|'373 3 7)
> Literally “mistake-proofing”
* Originally BAKA-YOKE ("“idiot-proofing”)

» Designing products that can only be used
In one way

* EG: HDMI cables or ski boot clamps

121



POKA-YOKE (7K1 3 #r)

* In the context of a production process:

» Designing components to reduce or
eliminate human error during assembly

Examples: doors can only be mounted one way, bumpers can only be attached one
way

122



POKA-YOKE (7K1 3 #r)

» What we do is more complicated than
assembling parts to spec

* That doesn’t mean we can’t embrace the
philosophy of poka-yoke

123



USER STORIES ARE YOUR FRIEND

* User Stories are a form of poka-yoke

* They attempt to establish intent:
» Who wants a feature?
 What do they want?
* Why do they want it?

124



ELEMENTS OF A GOOD USER STORY

* The story itself: “As a user type, | action
so that desired outcome”

* Acceptance Criteria

* Technical Requirements

Examples:
* User Stories
* As aplayer, | jump, so that | can traverse the environment
* As an animator, | have an animation blending tool, so | can make a smooth
combat experience
* As an engineer, | have continuous integration, so that | can maintain a
smooth and efficient build process
* Acceptance criteria
* To consider this feature complete:
* Pushing “A” needs to make the character jump
* The longer | hold down A, the higher the character jumps
* | need an easy to access variable to adjust the maximum and
minimum heights of the jump
* Technical requirements
* This code needs to interact with Class X
* It needs to accept Object Y
* The code can occupy a maximum of Z bytes in memory
* It has to accept A input and produce B output

125



FAILING TO PLAN IS PLANNING TO FAIL

* Yes, this can be time consuming

* Again, don't just ask what it costs

* Consider what it saves

126



FAILING TO PLAN IS PLANNING TO FAIL

» If you routinely experience mis-executed
features/designs, a little poka-yoke might be
exactly what you need

« User Stories can also serve as a check against
feature creep/churn

 An administrative cost to feature requests

If you have a designer or creative lead who is notorious for making impulse-drive
feature request, and thus creating a lot of churn, a little bit of administrative friction
can curtail that. He/she has to decide if he/she wants the feature badly enough to

write a user story for it.

127






KANBAN (& #R)

* Literally, “card” or “sign”
* Apull-based system

* When a downstream station needs input, it
passes a card to the upstream station

« Card corresponds to a certain number of parts

Let’s say I’'m the guy who mounts doors on cars, and you’re the person who
assembles the doors from component parts. When | run out of doors, | put a card in a
cart and slide it to you. You put a certain number (dictated by the card) of doors in
the cart and send it back to me.

129



KANBAN (& #R)

 Team members pull additional work when they
are ready for it

* Work isn’t forced on them

 The amount of inventory in the system is entirely
controlled by how many cards are in circulation

Unlike a push-based flow, where assembled doors keep arriving at my station and |
have to keep up, a kanban system means that | get work when | signal that I'm ready
for it. This is why it’s also known as “just in time” production.

130



KANBAN (& #R)

 Over time, managers remove cards to
maintain the absolute minimum level of

Inventory in circulation

131



WHY IS THAT HELPFUL?

* Two reasons

« Recall Little's Law — holding Th~oughput
constant:

* Less /nventory = Lower Flow 'ime

* Greater Flow Time Efficiency
(/nventory) = (Th~oughput) x (Flow ’ime)

Assuming Toyota’s throughput did not slow down, having less inventory means that
any individual unit spends less time in the process because it spends less time waiting
in queues. IE, your actual flow time moves closer to your theoretical flow time.

132



WHY IS THAT HELPFUL?

 Second, excess inventory masks issues

* |t acts like a layer of protective fat

« With less inventory, inefficiencies and waste
become far more apparent

* |E, look for the people who are waiting
around

If you have tons excess inventory lying around, there is always something to work on,
so imbalances become harder to spot.

133



REDUCING DIGITAL “INVENTORY”

 We don't have cards to yank

 But we do have work-in-progress limits

- Jira, Hansoft, and other common packages will
let you set WIP constraints

« Start loose and increase constraints over time

Use your software to limit the amount of tasks that can be assigned to any one
person to simulate the effect of removing cards from the process.

134






JIDOKA (B &11k)

« “Autonomation” (literally, “automation with a
human touch”)

« Machines and sensors designed to automatically
detect and flag quality issues as they occur

» And stop production if necessary

136



JIDOKA (B f&11t)

* |n software, the closest analog to jidoka are
automated testing scripts

* Individual sections of code (ideally, the
smallest possible testable parts) are
checked for integrity

137



JIDOKA (B f&11t)

* Other examples:

» Bots that play the game automatically
* Robust crash reporting systems
» Continuous integration

138



MUDA




MUDA (£ EX)

* Literally “waste”

140



MUDA (£ EX)

* Toyota
classifies waste

Into seven
categories:

1. Defects

2. Overproduction
3. Inventories

4. Extra processing
3. Motion

6. Transportation
7. Waiting

141



MUDA (£ EX)

« Defects are where we experience most of
our pain:

* Missed acceptance criteria

* Bugs

Meetings are a close second in my experience, but we’ll stick with defects for this
presentation

142



MUDA (£%EK)

» Experiencing 0 defects is not a practicable
goal

People will make mistakes

143



MUDA (£ EX)

* Find and fix defects when it is least expensive:
 As soon as possible!
» Before code is submitted to the repository

- Before submitted code is merged

* Before other code is built on top of the defect

144



A LEAN APPROACH TO QA
- Step 1: Buddy Testing

- What: another team member reviews change locally

« When: before submitting changes to
Perforce/GitHub/Subversion

« Why: to catch missed acceptance criteria or obvious
sources of error

145



A LEAN APPROACH TO QA
« Step 2: Automated Tests

« What: run automated, jidoka-style tests of changes
« When: before requesting a code base merge

« Why: catch technical defects without consuming dev-
hours

146



A LEAN APPROACH TO QA

« Step 3: Peer Review

« What: team members review changes in the repository

- When: before changes are merged

« Why: catch missed technical requirements or other
sources of technical issues to avoid contaminating build

147



A LEAN APPROACH TO QA
- Step 4: Manual QA Review & Regression

« What: dedicated QA members verify changes

- When: once changes are merged but before they go to
leads/directors for review

« Why: avoid the typical game dev “house of cards” and
to avoid wasting lead/director time

148



A LEAN APPROACH?!!!

1) The previous 4 slides might sound onerous, but | have seen this disciplined

approach to QA in action, and it results in an amazingly clean and stable code
database

2) You might have trouble reconciling a 4-step process with something called “lean
production”, because when you think “lean” you might be thinking of...

149



A LEAN APPROACH?!!!

...this guy. But when | hear “lean” | think of...

150



NO, A LEAN APPROACHQ

' . . L
i P,
)

-
WHEN THINK

"JCVD”

YOU ¢ f
THINK

‘LEAN’ 6 p-

...this guy: muscular, technically proficient and disciplined, and oh-so-handsome.

151



HEIJUNKA

AL




HEIJUNKA (F#£1k)

- Literally, “leveling’

« Common misconception: “batching” is best

because it avoids switching costs

« Batching increases in-progress inventory
(and thus flow time) and decreases flow
time efficiency

153



INVENTORY BUILD-UP (BATCHING)

As you prepare the Red Batch, you build up a bunch of in-progress inventory to avoid
incurring a switching cost. Then, as you bulk process the Red Batch, you
simultaneously start accruing inventory for the Blue Batch. Repeat ad infinitum.

154



INVENTORY BUILD-UP (BATCHING)

/IR

This leads to a perpetually inventory level (the purple line)

155



HEIJUNKA (F#£1k)
- Partially assembled products are a liability

 They represent capital tied-up in the system that
cannot produce an ROl until they are complete

 The longer inventory is in the system (the longer
the flow time), the greater the opportunity cost

156



HEIJUNKA (F#1t)
« Example:
* Your company'’s cost of capital is 10%

« Through inefficiencies, you have $10MM worth
of excess materials in your pipeline

« That means an annual opportunity cost of $1MM

For the folks who aren’t finance nerds: “cost of capital” mean, in simple terms, the
return that the company expects to receive from any investment. So, for every $10 it
invests, it expects to make a profit of S1 per year. In this case, the company could
reasonably expect to make S1IMM profit yearly on the S10MM of bloat currently in
the system if you could somehow liberate it.

157



HEIJUNKA (T #1L.)

+ Additionally, smaller, faster batches make it
easier to catch recurring defects before they
have a chance to propagate

 EG: arecurring defect results in much less

waste if it impacts a batch of 5 units, versus a
batch of 100

158



HEIJUNKA (FE#E1L)

* The goal of effective operations is not to
avoid switching costs, but to minimize
them

* The ideal: switching costs so low that you
can cost-effectively have batch sizes of 1

Toyota got down to batch sizes of one car

159



INVENTORY BUILD-UP (IDEAL)

In an efficient system, minimum inventory levels are collected and they are processed
as quickly as possible

160



HEIJUNKA IN GAME DEVELOPMENT
« We don't typically deal in physical inventory

* But there is still an analog

« If we shift our definition of “complete”
* From “in the code base and functional’
* To “QA’ed and ready to ship”

The analog becomes more apparent if we include a QA pass in our definition of our
feature being complete

161



HEIJUNKA IN GAME DEVELOPMENT

« Every incomplete feature is a liability

* |t can’t generate value for gamers until it is (at
least largely) defect free

* |t represents an investment of man-hours that
can't produce a return on investment until you
run it through QA

162



GAME DEV BUILD-UP

DAY 1
PATCH!

* Ina typical process, we generate an inventory of incomplete (not QA’ed) features
(yellow line)

* And simultaneously we accrue defects at some multiple of those features

* Then we hit our alpha/beta phases and focus on squashing bugs, and nobody
sleeps, and we witness the house of cards because every fix breaks five other
things

* And finally we throw our hands up and say “SHIP IT!!” and resign ourselves to a
day-1 patch

In short, we use an insane amount of batching: we batch process an entire game’s
worth of QA

163



HEIJUNKA IN GAME DEVELOPMENT

« Ensure features are defect-free when they are
added to the code base

 Move from a “build->build->build->build->build-

* |E, production->alpha->beta->certification
* Into a “build->fix->build->fix->build->fix" cadence

164



HEIJUNKA IN GAME DEVELOPMENT

QA batches as SMALL as possible
* |deally a QA pass for every submission

 Make the cost per QA pass as small as
possible

* Both in terms of money and time

165



YOU WANT US TO SLOW DOWN?!!

« Some of you may balk at the notion of slowing
the rate of feature development to allow for a
parallel QA process

* |I'm not actually advocating that you slow down

* |I'm advocating that you consolidate the work

The analogy | use is defragging a hard-drive: we should de-frag our production

process to make QA a part of feature development, rather than a separate phase of
production.

And here’s another analogy | like to employ on this subject...

166



THE TIME VALUE OF MONEY

* One of the fundamental concepts of
business

« $1 today > $1 in the future
* Due to risk and opportunity cost

* This is why we pay interest!

Example: | can get a $1 today or S1 in six months. The promise of a dollar in six
months is less valuable because | don’t know if | will actually get the dollar (risk) and
there will be things | could have done with the dollar in the meantime (opportunity
cost).

The primary reason you pay interest is to compensate your bank or credit card
company for the risk and opportunity cost of providing you with a mortgage or a line
of credit.

167



THE TIME VALUE OF FIXES

A fix today > The same fix in the future
Risk

Opportunity Cost

“Technical Debt” represents its own form of
Interest accretion

In software development, | like to think in terms of something | call “the time value of

fixes”. A fix today is more valuable than that same fix in the future, for the same

reasons:

* Risk —the fix might be larger in the future, because more code is built around it

* Opportunity cost — if the fix is larger in the future, it will consumer more time that
could have gone to other efforts

I’'m not alone in seeing analogs between finance and development. The term
“technical debt” represents a form of compounding interest. If you write hacky, short-
cut code, you are running up a charge on your production credit card. The longer that
debt stays on the books — the more code gets built around it — the more expensive it
will be to zero it out: the necessary re-factor will be larger.

168



A DIAGRAM OF LEAN PRODUCTION

» Write feature
Specs so as
to reduce the
potential for
human error

* Limitin-

* Minimize the
levels of
unfinished
features and
avoid batching

» Automate to
save time

* Maintain
disciplined
testing to
reduce waste

process work
to increase
efficiency and
more easily
spot production
issues

An overview of lean development, with the prior five terms in context.

169



GETTING STARTED

« Start small and build up lean over time
 Record objective data

* Apply the scientific method

* Anticipate “loss aversion”
* Point out losses caused by inaction

* Regarding objective data: it’s very tempting to just say “things are better”, because
that’s easy. Be disciplined: record objective measurements and gauge the impact
of an change.

* Regarding the scientific method: Question -> Hypothesis -> Test -> Observation ->
Analysis -> Conclusion -> Question

* Hand-in-hand with recording objective data, set objective hypotheses (EG,
this change should increase throughput by at least 10%)
* In my experience as a manger, consultant, and scrum master, loss aversion is the
largest hurdle to adopting a new modus operandi

* Losses loom larger than gains in our minds

* People will fixate on what a change costs instead of considering what
they’ll gain

* The trick with loss aversion is that it’s like putting out an oil well fire: you
have to set off a bigger explosion next to it

* |E, instead of communicating what they’ll gain from the change,
communicate what they’ll lose if they don’t change

170



CLOSING THOUGHTS




WE DON’T WORK IN FACTORIES

« Games != Widgets
 Studios = Factories

 Experimentation, uncertainty, and variance
come with the territory

172



WE DON’T WORK IN FACTORIES

« We don’t work in performance art either
» We have obligations to be responsible:

» With the money and resources provided to us

 With the livelihoods of our team members

173



WE DON’T WORK IN FACTORIES

* I'm not proposing that we eliminate or
reduce discovery

* It's a vital part of the creative process

174



WE DON’T WORK IN FACTORIES

« We have an obligation to eliminate waste
* Not to curtail experimentation

» But to facilitate MORE of it
 And to make it MORE productive

175



AND FINALLY...




AND FINALLY

* Nothing I've talked about is all that complicated

 The hard part isn’t adopting these practices

* The hard part is maintaining discipline in their
use

« Discipline is essential for seeing results

177



AND FINALLY

» “Discipline equals freedom’
> Jocko Willink

 Consultant
* Retired Navy SEAL
* Black Belt in Jiu-ditsu

* If you have the discipline to eat a balanced diet and get regular exercise, you will
have the physical freedom afforded by good health

* If you have the discipline to study consistently throughout the semester, you'll
have the freedom to sleep the night before the final because you won’t need to
cram

* And..

178



AND FINALLY

* If you have the discipline to follow
processes that reduce or eliminate waste

* You will have the freedom to spend your
time generating more value for gamers
instead of fighting fires

179



QUESTIONS?




THANK YOU!

* @justin__fischer
* (TWO UNDERSCORES!)

+ bitlyljf_gdc2017_bdts

Feel free to hit me up by your vector of choice. | love talking shop!

181



APPENDIX: SPECIAL CASE

CALCULATIONS

182



PERSON DOES MULT. ACTIVITIES

 That team member’s activity time is simply the sum of
his/her individual activity times

 This is true even if the activities are not sequential in the

pipeline

183



PERSON DOES MULT. ACTIVITIES

« Example: A character artist handles the hi- & lo-poly
models

* She gets one row in the chart, and her activity time is the

sum of the hi- and lo-poly activities

184



DIFFERENT SPEEDS IN A POOL

* The Activity Time is simply the average activity time of
all of the team members

185



PERSON NOT FULLY ALLOCATED

« Determine what percentage of that person’s bandwidth
goes to the pipeline in question

* Divide that person’s activity time by that percentage

186



PERSON NOT FULLY ALLOCATED

« Example: The character artist also helps with
environment modeling. 60% of her bandwidth is for
character models. The other 40% goes to environment

work.
* For the character art pipeline, her activity time is T/60%

187



STAFFING CHANGES OVER TIME

* |f a person will be added to or pulled from a pipeline in
the future, determine what percentage of the remaining
production schedule (from the perspective of today) he

or she will be missing, and then divide his/her Activity
Time by 100% minus that percentage

188



STAFFING CHANGES OVER TIME

« Example: The character artist will be added to the
pipeline 40% of the way through the remaining
production schedule

Her activity time will be T/(100%-40%) = T/60%

189



STAFFING CHANGES OVER TIME

IMPORTANT: Once the person is added to the pipeline,
you no longer need to account for his/her absence
moving forward. No need to adjust his/her activity time.

ALSO IMPORTANT: The percentage of time the person
will be on the pipeline is subjective to how much time is
remaining in the schedule from TODAY

« Qver time you need to adjust the percentage you put
in the divisor

190



STAFFING CHANGES OVER TIME

* The same principle applies if a person is currently on
the pipeline, but will be pulled off later

* Orif a person will be added and then subsequently
removed (e.g. outsourcing)

« |t all boils down to dividing that person’s T by the
percentage of schedule he or she will be working on
the pipeline

191



clo/@

THANK YOU!

GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Slide added so | know where to stop clicking!

192



