
“Better Development Through Science: How Aliens, Odysseus, And Toyota Can Help
Improve Production" by Justin Fischer is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

1

http://www.breakingthewheel.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

This presentation is about how to improve production efficiency and predictability,
and eliminate waste. In order to successfully communicate the high-level concepts, I
need to first establish some fundamentals.

2

That means I need to give you a crash course in operation science. So:
• Don’t be afraid of math
• Don’t get too hung up on terminology
• Focus on the high-level takeaways and feel free to email me if you are confused

about anything!

3

Hang in there! The nuts & bolts of the first half is to set the stage for the pay-off of
the second half.

4

Because they say to always start presentations with stories…

5

[Insert tacky Beavis & Butt-Head reference here]

6

What was once an exciting discovery, over time, iteration, and repetition, becomes
something rote and predictable.

7

There is no mystery to boiling water – it’s pure process. On the other hand, there are
lots of discoveries to be made at the cutting edge of physics!

8

Few activities are pure process (devoid of any experimentation or discovery) and
even fewer are pure discovery (totally new and based on no prior knowledge). Even
cutting edge physics experiments are built on a foundation of established science.

Cooking is a great example of an activity that involves both process and discovery.

9

As with fire, all activities start on the discovery end of the spectrum and move
towards the process end. This applies both globally (somebody had to have been the
first person to boil water) and individually. The first time you make your own pasta
sauce, there was a lot of discovery. But, by the 1000th time…

10

11

12

13

Discovery, by definition, involves the unknown. And the unknown brings with it risk.

14

Or as data and operation scientists call it, “variance.” From the perspective of
operation science, statistics, finance, etc, the terms “risk” and “variance” are
essentially interchangeable.

And that variance is the source of so much of our pain when we try to manage long
term projects and forecast development.

15

We can’t just abandon discovery! It’s what makes our jobs fun!

16

We don’t need to resign ourselves to the ravages of variance

17

If every activity, A-E has a distribution of outcomes of 1 throgh 5, then the total
distribution of outcomes to get from the start of A to the end of E is 5 through 25.

18

Even the most avant garde, experimental, in the weeds, exploratory design is still
supported by some degree of process (spec’ing features, coding them, building them,
running QA passes)

19

That’s why we need all this stuff!

20

21

22

EG, if we can shrink the outcome distributions of B and D from 1-5 down to a known
outcome of 1, the distribution total outcomes shrinks from 5-25 to 5-17

23

EG, if we shrink narrow the possible outcomes of B and D to just 1, then the
combined variance of A, C, and E could increase by 8 without changing the overall
outcome distribution of 5-25.

24

25

26

27

Maybe it’s cliché, but Aliens is my favorite movie ever.

28

At the climax of the movie, Ripley and Newt stumble right into the heart of the nest
and meet the Queen

29

And the Queen has this gross, slimy, bulbous sack through which she deposits face-
hugger eggs on the hive floor

30

31

32

So, here’s our Queen…

33

Let’s assume that, on average, the Queen lays 7 face-hugger eggs a day

34

Let’s also assume it takes the queen 5 days, on average, to gestate a single egg

35

If that is the case, the only way the Queen can sustain a 7-egg-a-day throughput with
a 5-day per egg turnaround time is if there are 7 eggs in each phase of gestation

36

37

38

39

40

41

(Belaboring the point to make sure it’s clear)
For any ongoing process (assembling cars, manufacturing cans of soup, or generating
game assets):
• The average amount of things currently being processed (the inventory)…
• …is equal to the average rate at which things come out of the process (the

throughput)…
• …multiplied by the average time to process a single thing (the flow time)

42

I will be brining this equation up contextually throughout the slides

43

44

Imagine that inside the egg sack is a complex sequence of ‘activities’ that are all
necessary to generate a complete face hugger egg

45

One path is clearly longer than the others in terms of cumulative time. This is the
“critical path”.

46

Let’s also notice that one activity is distinctly longer than the others. This is the
“bottleneck.”

47

48

49

Here is a hypothetical pipeline for character asset creation

50

51

This slide automatically transitions to the next to provide contrast between overall
pipeline and critical path

52

Here is our critical path

53

We therefor should expect that an average character takes 29 days to complete.

54

This slide automatically transitions to the next slide for visual effect

55

Here is our bottleneck

56

Therefore, we should expect that a complete character will emerge from the process
every 9 days on average (or, we can think in terms of 1/9th of a character per day on
average).

57

58

• Blue bars are the time per character
• 1/R is the time between characters
• Orange bar is the total time for all 4 characters

59

60

If you determine your flow time by adding the activities in the critical path, you have
a theoretical flow time – IE the average flow time if the in-process inventory never
has to wait.

61

Anything that causes in-process inventory to stop being processed is Wait Time.

62

63

If you have an actual flow time that is less that your theoretical flow time, you high-
balled the theoretical. IE, you over-estimated how long some or all of your critical
activities take. You can’t do better than a process where nothing has to wait.

64

65

66

To, emphasize the flexibility of Little’s Law: it can apply to any level of granularity - the
whole pipeline, continuous sections of the pipeline, or individual processes

67

68

69

I’m simplifying the previous pipeline for the sake of clarity. But a capacity chart would
still work on the more complicated pipeline from the last example.

70

Go into Excel and create a simple 7-column chart (or just download a copy from the
link at the end of the slides, before the Appendix)

71

First, list every activity in the pipeline, critical path or otherwise. Order doesn’t
matter.

72

Next, list the average time it takes to complete a pass of each activity for a single
asset

73

Next calculate the single asset throughput (the rate at which single units emerge from
the activity) by taking the inverse of the activity time.

To explain how this works, if you take Little’s Law and assume Inventory = 1 (because
we are talking about the flow time for a single unit), then Flow Time and Throughput
are reciprocal:
 Inventory = Throughput * Flow Time
 Flow Time = Inventory/Throughput
 Inventory = 1
 Flow Time = 1/Throughput

74

Now, list the number of people you have performing each activity

75

Multiply the throughput per activity by the number of people performing the activity
to calculate the combined throughput for that activity. This is the collective average
throughput of all of the people handling the activity.

76

Identify the activity that has the lowest combined throughput. As established in the
Alien Queen example, the activity (or activities) with the lowest throughput – the
bottleneck(s) – dictate the throughput for the entire process.

77

Finally, divide the process capacity by each individual combined throughput to
calculate the respective utilization per activity. This number tells you how much of a
given team’s bandwidth this process will consume.
• Examples:

• This process will consume 2/3’s of our concept artist’s bandwidth
• And 1/3 of our low-poly modelers’ collective bandwidth
• And 100% of the cinematic animators’ collective bandwidth

It’s important to note that the higher the percentage, the closer to pool is to being a
bottleneck.

78

 Any pool with 100% utilization is a bottleneck.

79

On that last bullet: don’t fall for the “one month baby” trap – you can’t throw a ton of
people at the same asset and get it faster. You can divvy up a list of animations
amongst animators to some extent, but you cant throw three character modelers at
the same model and get it done in a third of the time.

80

81

Again, here is the same capacity chart, with cinematic animations as the bottleneck.
Let’s add one team member to the cinematic animation pool.

82

Two things happened:
1) While cinematic animation is still the bottleneck, throughput has increased to 1/3

of a character per day. In turn, overall throughput has also increased to 1/3 of a
character per day

2) Concept art is now also a bottleneck, so we now have two bottlenecks. We aren’t
worse off because we have two bottlenecks – we’re still moving faster than
before. But it means we cannot improve throughput by adding a single person.

83

For example, if we add another cinematic animator, two more things happen:
1) Cinematic animation is no longer a bottleneck, and now has some spare capacity

(utilization < 100%)
2) But Concept art still is, so overall throughput is still capped at 1/3 character/day;

IE, that new resource did not improve throughput

84

And if we add yet another animator, throughput is still locked at 1/3 of a character
per day. All that the additional resource accomplished was creating spare capacity for
the animators, which is not the most efficient use of money.

85

But, if we add a concept artist:
1) The bottleneck now shifts to QA
2) Process capacity increases to 0.4 characters/day
3) The concept artists and cinematic animators have spare capacity

86

87

If we had all three cinematic animators at once, we would have seen that the
bottleneck moved, but we wouldn’t have know when it move. Thus we wouldn’t have
known which additional team member/s only created spare capacity.

88

It’s impossible to eliminate all bottlenecks. There will always be a slowest resource.

89

IE, the example takes a very clean, simplified view of the world.

90

The modified calculations are still just arithmetic. Nothing super-complicated. See
Appendix!

91

92

93

94

• Example: if the actual bottleneck (example: the cinematic animators) runs out of
work, and upstream processes (example: the riggers) can’t pass it more work
because they’re tied up with busy-work, the bottleneck will stop moving. Thus
your overall throughput will slow down.

95

96

97

98

Time for a palate cleanser!

99

100

101

Scylla is a six-headed serpent who will devour 6 men from any boat that passes, one
with each head. On the other side is Charybdis, and underwater beast who creates
whirlpools. She might not catch you, but if she does everyone on the boat dies.

102

This is Odysseus’ choice

103

104

In the story, Odysseus picked Scylla…but didn’t tell anyone on his boat what would
happen.

105

106

107

108

109

110

111

112

113

114

115

Much like Odysseus, implementing lean means choosing the known cost in order to
minimize risk of unknown costs. There was no risk with Scylla: you lose 6 sailors, no
more, no less.

116

117

118

119

120

121

Examples: doors can only be mounted one way, bumpers can only be attached one
way

122

123

124

Examples:
• User Stories

• As a player, I jump, so that I can traverse the environment
• As an animator, I have an animation blending tool, so I can make a smooth

combat experience
• As an engineer, I have continuous integration, so that I can maintain a

smooth and efficient build process
• Acceptance criteria

• To consider this feature complete:
• Pushing “A” needs to make the character jump
• The longer I hold down A, the higher the character jumps
• I need an easy to access variable to adjust the maximum and

minimum heights of the jump
• Technical requirements

• This code needs to interact with Class X
• It needs to accept Object Y
• The code can occupy a maximum of Z bytes in memory
• It has to accept A input and produce B output

125

126

If you have a designer or creative lead who is notorious for making impulse-drive
feature request, and thus creating a lot of churn, a little bit of administrative friction
can curtail that. He/she has to decide if he/she wants the feature badly enough to
write a user story for it.

127

128

Let’s say I’m the guy who mounts doors on cars, and you’re the person who
assembles the doors from component parts. When I run out of doors, I put a card in a
cart and slide it to you. You put a certain number (dictated by the card) of doors in
the cart and send it back to me.

129

Unlike a push-based flow, where assembled doors keep arriving at my station and I
have to keep up, a kanban system means that I get work when I signal that I’m ready
for it. This is why it’s also known as “just in time” production.

130

131

Assuming Toyota’s throughput did not slow down, having less inventory means that
any individual unit spends less time in the process because it spends less time waiting
in queues. IE, your actual flow time moves closer to your theoretical flow time.

132

If you have tons excess inventory lying around, there is always something to work on,
so imbalances become harder to spot.

133

Use your software to limit the amount of tasks that can be assigned to any one
person to simulate the effect of removing cards from the process.

134

135

136

137

138

139

140

141

Meetings are a close second in my experience, but we’ll stick with defects for this
presentation

142

People will make mistakes

143

144

145

146

147

148

1) The previous 4 slides might sound onerous, but I have seen this disciplined
approach to QA in action, and it results in an amazingly clean and stable code
database

2) You might have trouble reconciling a 4-step process with something called “lean
production”, because when you think “lean” you might be thinking of…

149

…this guy. But when I hear “lean” I think of…

150

…this guy: muscular, technically proficient and disciplined, and oh-so-handsome.

151

152

153

As you prepare the Red Batch, you build up a bunch of in-progress inventory to avoid
incurring a switching cost. Then, as you bulk process the Red Batch, you
simultaneously start accruing inventory for the Blue Batch. Repeat ad infinitum.

154

This leads to a perpetually inventory level (the purple line)

155

156

For the folks who aren’t finance nerds: “cost of capital” mean, in simple terms, the
return that the company expects to receive from any investment. So, for every $10 it
invests, it expects to make a profit of $1 per year. In this case, the company could
reasonably expect to make $1MM profit yearly on the $10MM of bloat currently in
the system if you could somehow liberate it.

157

158

Toyota got down to batch sizes of one car

159

In an efficient system, minimum inventory levels are collected and they are processed
as quickly as possible

160

The analog becomes more apparent if we include a QA pass in our definition of our
feature being complete

161

162

• In a typical process, we generate an inventory of incomplete (not QA’ed) features
(yellow line)

• And simultaneously we accrue defects at some multiple of those features
• Then we hit our alpha/beta phases and focus on squashing bugs, and nobody

sleeps, and we witness the house of cards because every fix breaks five other
things

• And finally we throw our hands up and say “SHIP IT!!” and resign ourselves to a
day-1 patch

In short, we use an insane amount of batching: we batch process an entire game’s
worth of QA

163

164

165

The analogy I use is defragging a hard-drive: we should de-frag our production
process to make QA a part of feature development, rather than a separate phase of
production.

And here’s another analogy I like to employ on this subject…

166

Example: I can get a $1 today or $1 in six months. The promise of a dollar in six
months is less valuable because I don’t know if I will actually get the dollar (risk) and
there will be things I could have done with the dollar in the meantime (opportunity
cost).

The primary reason you pay interest is to compensate your bank or credit card
company for the risk and opportunity cost of providing you with a mortgage or a line
of credit.

167

In software development, I like to think in terms of something I call “the time value of
fixes”. A fix today is more valuable than that same fix in the future, for the same
reasons:
• Risk – the fix might be larger in the future, because more code is built around it
• Opportunity cost – if the fix is larger in the future, it will consumer more time that

could have gone to other efforts

I’m not alone in seeing analogs between finance and development. The term
“technical debt” represents a form of compounding interest. If you write hacky, short-
cut code, you are running up a charge on your production credit card. The longer that
debt stays on the books – the more code gets built around it – the more expensive it
will be to zero it out: the necessary re-factor will be larger.

168

An overview of lean development, with the prior five terms in context.

169

• Regarding objective data: it’s very tempting to just say “things are better”, because
that’s easy. Be disciplined: record objective measurements and gauge the impact
of an change.

• Regarding the scientific method: Question -> Hypothesis -> Test -> Observation ->
Analysis -> Conclusion -> Question

• Hand-in-hand with recording objective data, set objective hypotheses (EG,
this change should increase throughput by at least 10%)

• In my experience as a manger, consultant, and scrum master, loss aversion is the
largest hurdle to adopting a new modus operandi

• Losses loom larger than gains in our minds
• People will fixate on what a change costs instead of considering what

they’ll gain
• The trick with loss aversion is that it’s like putting out an oil well fire: you

have to set off a bigger explosion next to it
• IE, instead of communicating what they’ll gain from the change,

communicate what they’ll lose if they don’t change

170

171

172

173

174

175

176

177

• If you have the discipline to eat a balanced diet and get regular exercise, you will
have the physical freedom afforded by good health

• If you have the discipline to study consistently throughout the semester, you’ll
have the freedom to sleep the night before the final because you won’t need to
cram

• And…

178

179

180

Feel free to hit me up by your vector of choice. I love talking shop!

181

182

183

184

185

186

187

188

189

190

191

Slide added so I know where to stop clicking!

192

