
• 00:00, 00:35, 58:15

Welcome Everyone,

As TAs we are tasked with keeping up with consumer expectations.

At ever demanding Frame Rates, Screen Resolutions,

and for those next big moments.

My name is Ben Laidlaw

and I’m here to talk about using offline simulations

to create complex assets that you would otherwise

would not be able to author by hand.

Like Photogrammetry and Motion Capture

We can capture higher fidelity assets

for our games with simulations

So let me show you what I’m talking about.

This following video clip

Was from our Halo 5: Guardians E3 Headliner

• 00:35, 01:00, 57:25

Halo 5: Guardians, E3 Headliner

• 01:35, 00:10, 56:15

So who am I?

For a Technical Artist

This may be the Greatest

existential

question

of all time.

• 01:45, 00:20, 56:55

My name is Ben Laidlaw.

I have 3 Art degrees

including an MFA from across the street

at AAU.

I’ve worked across North America

at multiple studios.

I’ve worked the gamut of 3-D

from Commercials, to Films, to AAA Games

However, since we all work in a visual medium

Let me show you a video of

some of my other work real quick.

4

• 02:05, 01:00, 55:55

Who am I Video

• 03:15, 00:45, 55:10

With a quick show of hands,

how many people use simulations in their content

creation pipeline?

Ok cool about… # of you.

I’ll tailor the talk a bit to focus on that.

In general this talk will be more of an overview

of all the aspects required in simulated content

as opposed to one type of simulated content.

So whether you are using, managing, or

implementing this pipeline,

There should be something for you.

However at the end.

Feel free to ask detailed questions on any of it.

It’s a very deep subject.

I will also point out some of my tools and setups

and some additional resources,

To help you get started directly after this talk

There will be QA time afterwards,

if you don’t want to step up to the mic.

You can contact me Tech-Art.org

6

• 03:50, 00:25, 54:45

In general simulated content requires

a different type of content pipeline.

You’ll be familiar with a lot of the steps,

so it’s more of a hybrid, than a brand new pipeline.

This will work at AAA studios and tiny Indies.

Everything is scalable.

I have set this up on my own at 343 for Halo,

I do this on personal and commercial projects

and I have worked as a cog doing this at larger

studios.

7

• 04:15, 00:45, 55:30

This is our simulation hit list.

I packed them into 5 simple categories

to remember.

● Content

● Preparation

● Infrastructure

● Data Massage

● Maintenance

The short elevator pitch for each one is:

What type of content can we make?

What is the scope of what we CAN create?

How to prepare for your simulation?

What type of simulations are you doing?

What are the hardware and the software needs to

make this possible?

Your IT person will enjoy this.

Once your simulations are done. It’s not really over.

You need to give that data some love,

give it a massage, sculpt it into what you need it to

be

Further once you bring these assets into this world,

you need to make sure it survives in this world.

It’s a very cruel world.

8

• 05:00, 00:20, 54:00

What is your final asset type?

This may seem like it should be blatantly obvious.

A texture pipeline builds a texture.

A modeling pipeline builds geometry.

Simulation, however, is a method

that can be used by Any pipeline

for Any asset type.

It’s a means to an ends

• 05:20, 00:20, 53:40

Apologies for the stereo-typical slide.

It is an important thing to see

And to consider.

Simulation are the imitiation of an operation

over time.

Will first be talking about operations,

and we will follow up with the TIME

and I will stress the TIME part now,

write this down if you want.

We will circle back to it later.

Simulations are a method,

the output of which could be any content.

10

• 05:00, 00:20, 54:00

Some of the categories of content

that are directly applicable to simultion are:

Animated Geometry,

Textures,

Levels and Static Assets

similar to what

Luiz lead with

in the previous talk.

Will talk a bit about Complex Asset

for instance state machines and sequences

• 06:00, 01:00, 52:00

Animated Geometry can encompass a large swath

of asset types.

The most common personally

for our Team on Halo 5 was Geometry Caches

We learned to push over a million transforms

through the GPU at 60 FPS

It became our bread and butter, to squeeze any

simulation through

like the E3 Headliner.

For object Rigs, think moving platforms and

mechanical motion.

Characters using physics to define fat jiggling, and

hair flopping,

stuff a character animator would have to do time

consumingly by hand.

Flocking Algorithms for cyclical birds flying

through the sky.

Fleets of Ships fighting.

Stadiums of people doing the wave.

Debris emitters, to fill the environment with

extremely cheap detris.

Fluids such as Water Fountains, rivers, and lava

falls

With UI, making Iron Man’s HUD can be immensely

pleasing.

The list can go on endlessly as does the lexicon for

moving geometry.

12

• 07:00, 00:40, 51:20

Textures can be simulated as either a direct visual

map, or as a data field.

As far as visual maps, think of Substance with

particle painting,

imagine applying that deterioration and wear

directionally

and layered across a whole level.

Visual Textures can be responsible for rain,

erosion, drips, scratches, dings and dents. To name

a few.

Why have an artist paint them on thousands of

assets?

When you can simulate a whole levels worth of

masks at the same time.

Fire Simulations

get rendered as a texture array.

You can make particle emitters,

or capture particle data in textures.

As data you can use these textures to

propagate vegetation of all sorts.

You can design vector fields for wind currents.

You can turn your river sims into flow maps.

13

• 07:40, 00:30, 50:50

Luiz in the previous talk

Talked about this, so I’ll be a bit on shorter.

Procedural level creation is an amazing tool.

But on top of just creation,

you can performs sims on these.

You can pile debris or rocks.

You can actually erode entire levels based on

water flow,

or the sands of time.

Watch cities crumble and grow over the millennia.

You can make it snow,

so that trees actually bend with the weight of their

loads.

You can create clouds

that you can light from day to night as they evolve

and change.

14

• 08:10, 00:30, 50:20

You can even use simulations to create complex

assets.

For instance the perpetual door problem,

Cover, walls, floors, ceiling.

Even though these are offline sims,

you can make event based triggering mechanism,

that work on regions, with multiple permutations.

That are layered on top of particle and havok

geometry.

The E3 headliner was a complex assembly of

trigger volumes, state machines, and

sequences.

You can even simulate

not only the character animations themselves,

but whole characters, with their rigs, in large

crowds.

15

• 08:40, 00:20, 50:00

With a bunch of these content types floating through

your heads

I want you to grab hold of one of these

And write it down on a piece of paper;

If you are taking notes

Something like:

Asset Deterioration,

Geometry Caches,

or Flocking

With this item in our heads,

will begin the next step to prepare if for simulation.

16

• 09:00, 00:30, 49:30

We will split up preparation into few categories to

keep it digestible.

First off is the software you want to work with.

Then the type of simulations you want to run.

You need to do prepare your models and your

animation.

Then we need to set up the sim, not necessarily the

pure physic algorithms

But establishing gravity, friction, collision,

And basic art direction for your game

• 09:30, 00:30, 49:00

Our first decision is the software and plugins we

want to use.

This can depend on the artist you have available to

you,

Your financial constraints.

Your studio history

Also what you need to get out of it.

There are many good software and plugins.

We used Houdini

so you know the bias point

and the comparable lexicon so you can A and B

your options

However, the presentation has been abstracted

So that you could use any application

In order to help you pick the best applications

There are 6 main points I want to bring up

These are aimed towards working with a team,

this makes it scalable to grow

and shrink to any size team.

From indie to corporate.

18

• 09:55, 00:25, 48:40

You need a software that can simulate anything

you need,

and give you a range of options.

You’ll often find people run themselves straight into

a black box wall

with some software when they are asked to make

certain types of art.

You also need to be able to post-process the

simulation,

however you need to do that type of data

manipulation.

You’re simulation will never be perfect the first time,

and the more options you can have to edit them the

better.

19

• 10:15, 00:20, 48:15

Iterative Level Design will kill you in the realm of

simulations.

Imagine trying to do a flow map for a river,

and the art director each week is changing the

rocks.

You need to be able to slurp up the level

and kick that sim off with a decent tolerance

threshold

that you don’t have to hand author the sim

every time the director moves a rock.

• 10:35, 00:20, 47:55

Say you make a real cool debris emitter.

I made one for my lead Chris Woods that was a full

3-D bullet solver,

but we need to share this with each other as we use

it with every asset.

I can not just be copying and pasting from different

scene files,

I need to use this as proper tool throughout all

productions.

• 11:05, 00:30, 47:25

Once I make a tool we don’t want to be making the

same tools

for every other software under the sun.

Plus the next artist that walk into the studio

The are going to have a completely different

background,

as that is how we get diversity and better problem

solving into your studio

so you need to plan for this and allow for it

Your tools need to be accessible across all dcc’s

and engine’s

If you don’t plan for this you will build yourself into a

box,

and you are going to notice the walls close in on you

very fast.

22

• 11:35, 00:25, 47:00

When you are making assets

Or those big moments in your game,

those unique elements,

the islands in the sea of your environment art,

You need to be able to adapt your tool set to be

able to author that content.

So we need a data agnostic tool set

where the tools can be procedural

and swapped around.

For your E3, your intro’s, your end games,

those little unique blips in the game that connect

your player to your world

23

• 12:00, 00:20, 46:40

At the end of the day your pipeline team can only

support a limited number of packages,

so if you have a half dozen programs that begins to

become more maintenance than it is worth.

You need a single tool that can handle it all,

which is why I pick Houdini

• 12:20, 00:30, 46:10

Now that we know about some of your software

needs.

We should have an idea on the types of

simulations algorithms you may run.

I’ve listed a few with their houdini names

and the main parts of the algorithm that they are

based on,

so you can compare it with your own simulation

options.

Each software package optimizes these algorithms

differently

So no two packages will produce the exact same

results.

These simulation types can run the gamut from gas

simulations for fire, smoke and dust to,

Finite Element for soft deformations and cloth.

And custom unique solvers that can help define the

rules of your world building.

Pick a sim type and write it down, so that we can

apply it to our content type.

25

• 12:50, 00:25, 45:45

Now we are moving on to Modeling for

Simulations.

In games, films, and commercials, when we build a

set or a model,

we don’t build the internal parts we never see.

That’s just not practical, or render friendly.

However if you want to break that part up,

you need to see the inside….

::PAUSE::

So there are some architectural and mechanical

rules we should follow

vis-à-vis the exploded diagram

The common refrain is to build it water tight.

This only makes sense if it’s composed of one

element.

A cement wall or an iron pipe.

However, if you build it like it was real,

when we go to shatter it.

It will break apart realistically.

26

• 13:15, 01:35, 44:10 “2:00”

For those that raised a little red warning light about

building it real.

Don’t worry, I have some general guidelines to

make that production safe.

So take that asset you have written down,

And mentally apply these.

• 13:15, 01:35, 44:10

Identify what is earmarked for simulation,

This is general a specific asset,

or this may be a general area for a moment.

• 13:15, 01:35, 44:10

Use the snap to features so the geometry does not

have overlapping edges.

These finicky edge overlaps are the most time

consuming to post cleanup.

• 13:15, 01:35, 44:10

Give the outside shell a realistic material depth

The depth issue is dependent on material type.

Sheet metal may be safe with double sided material,

But heavy metal or wood paneling has an

observable thickness,

That wraps the internal structure.

Think inside the walls of this very room.

Keep the outside shell in an attribute group.

The outside shell is your traditional game model

and your beginning and end states.

• 13:15, 01:35, 44:10

Separate based on material type.

The separation on material type is the first

extremely unique issue,

Half the time this denotes an actual geometric

component like a door knob

Versus the main part of the door.

You can test this by exploding view based on

material names,

“plus keep the material count down per an asset.”

• 13:15, 01:35, 44:10

These three are a triplet,

Topology & Polycount

Volume Conservation,

Size & Piece limit,

Obviously don’t build micro features.

For us it was .04 fusing in world space

For the vertices that do not matter.

Keep your poly count relative to world space,

This can be a simple diagnostic.

Build the primary key components that fit into the

object.

Under a car hood there should be an engine block.

And then when you go to spit out the pieces,

Do not spit out arbitrarily more piece than can fit

inside the vehicle.

The consumer knows,

This is why it’s comedic for unfeasible amount of

gore to come from monster in

“B” rated horror films.

It’s comedic not realistic.

We are in a generation more sophisticated than

cause in effect for “reality” style games.

32

• 13:15, 01:35, 44:10

Lastly keep your outliner and hierarchy clean and

well named.

Like point snapping and hygiene,

it is a clean and healthy habit

Also depending on your pipeline your simulations

could be dependent on

the naming, materials, or attribute tags,

Just like a rig as will go into next.

• 15:50, 00:10, 43:00

Before we go deeper into simulation land

I want to leave you with an easy to reference reminder

if someone ask you why you need those pieces.

Turn on the printer smashing scene from office space

and tell them to pay attention to the printer.

• 16:00, 01:00, 42:00

For assets that are already animated,

There are three simple things I would be aware of

The first is pre and post action motion,

Especially if you are using physics for secondary

animation on your character rig.

This means your motion must begin before

and carry after your required animation.

Remember that physic book analogy,

An object in motion stays in motion.

An object at rest stays at rest

So if you start your sim when it is static like a statue

Your sim will be static like a statue.

Even fire sims have a long pre-roll sometimes of

hundreds of frames.

The next two are about grazing and destroying

If you are going to impact, step on, or interact with an object,

Animate the reaction and make sure you don't penetrate.

You can use your character sims if needed.

Simulations hate, Hate, Interpenetrating objects,

Two objects are not meant to exist in the same space.

The sim will explode, and not in a controlled way.

However, if you are destroying something,

You need to animate the anticipation, interaction and then penetration.

If your sim is secondary, it will not feedback into the character.

35

• 17:00, 01:15, 40:45

Now we begin the true prep of the simulation.

So remember the asset you had written down

Where going to becomes riggers of simulations now.

Imagine how big that asset is in “our human world”

space.

We want to normalize the asset to this space.

Like the concept of PBR shading and rendering.

Physic work real well based in real world units.

Think of gravity, You can break it after you have it

correct. Not before.

Often there are many ways to weather or shatter an

object.

This is where you should look up reference, and

lock on your reference.

If you are breaking marble, rebar lined concrete,

cinder blocks, wood, metal facade

how the item will break is highly important.

For games especially it is important to pre-break

your assets,

this way you have maximum control over your part

counts,

And it is far more expensive at run time.

You also need full control of your newly created

surfaces.

this means you need materials, uvs, engine side

properties, and normals to name a few.

If you have a good material naming convention, you

can actually automate this.

Concrete to ConcreteInside for instance.

You need to be able to name/group these pieces,

so when you feed them into a simulation

you can identify, to the physics program, this is part

A. This is part B.

UV density is actually a funny thing to bring up as

the more surface you create

36

The smaller the pixel density becomes in the

normalized space.

So need to tile this like your environment ground.

You can automate this by normalizing it based on

your world size.

36

• 18:15, 01:20, 39:25

Now that your geometry is preped, you need to

apply the initial state of physics.

This is like setting up a character rig, For some sim

types this can be simple,

But for Rigid Body simulations, this can be quite

complex.

Will use a building such as our Sangheli towers.

First set the T pose of your sim. We call this the rest

position,

It’s the point position when everything is standing up

clean and proper,

We use this for shading, and transform extraction.

Constraints are the FK/IK and bones of your sim,

Imagine a character with several thousand pieces.

Constraints connect all of those pieces together

So when you apply force on one end,

Everythign flexies, hinges, breaks and accordingly

and timely.

Thanks to newtonian physics, that darn physic

book…

an object at rest tends to stay at rest.

So those piece you toss pass your player are

statues,

And will fall flat with gravity, ::Sound effect… shh

splat::

until you append the appropriate velocity,

If you are handling cloth and wires

the elasticity can direct flexibility by uvs, color,

etcetera.

Or in general define why your tshirt is different than

a cable

37

To get your girders to bend, depending on your

Finite Element Sytem

you may need to create your own bounding cage.

For the torches along your precipist you need to

create realistic fuel sources.

Whether it acts like the surface area of a log, or like

gasoline spreading on the ground.

37

• 19:35, 01:20, 38:05

Our sim is ready for art direction. This is when you

are the composer. The true artist,

Think of V for Vendetta and the blowing up of

parliament to the 1812 overture

This can be you directing where your terrain will

erode and avalanche

Or the maticulus grooming of your hair sim

For sequential assets, like the building,

this is often the directing, the release of forces, to

the beat of the sequence.

This can be eroding your contraints, as the ground

parts to consume your city

You need the related geometry alongside your

sim, to be integrated for interactions.

For iterative level design we just threw a grid over

the mesh and projected on to it

As the level changes the ground would keep on

updating

You may need guide geometry, whether moving or

static to help your sim along

I’m very fond of the pokey stick method. In order to

get my simulation working sometimes,

i will carve a hole in the back of my environment and

literally hit it with a stick.

Impulse forces are great and all, but sometimes,

you just want to hit it with a stick.

For any collision geometry, make sure the mesh, or

volume, that is created is correct

If you have a concave surface make sure the

default is not convex, the geometry will not be

happy with you.

It will actually explode out, not good, happy

accidents aside.

This was a big issue with the bullet solver when it

first came out.

38

Also sometimes it best to build a bounding cage on

your sim, A piece can literally go interstellar,

The solver doesn’t care you screwed up, So for

really complex sim, I enclose them in a box

Keeping all my eggs in the same basket.

38

• 20:55, 01:05, 37:00

Finally this is where we work with the core of the

actual simulation algorithm.

This is the part of the sim that loops over time

each frame.

This is where gravity is defined in your sim,

Make sure your level is normalized to the human

world,

Otherwise your gravity will be off,

You should try and avoid art directing gravity,

As we perceive gravity in a hieghten sense,

So what we think the rate should be is often not,

This also includes per object tolerance, such as,

density, friction, bounce.

Plus you need to manage particle and voxel

density. Start small, scale up.

Work on the general motions first,

So that higher order details can be revealed with

higher density

Just like animation. You don’t want to be worried

about secondary animation

if you don’t have your blocking correct.

You need to impose natural resistance on your

motion

Air and water resist movement via drag or speed

limits.

Clumping and Viscosity, are a type of stickiness

quotient,

getting this right really makes the difference

between stuff accumulating like snow and sand or

water and lava.

As your simulations perculate forces, like wind, curl

noises, and advections

will affect how particles and volumes move through

a space.

The difference from cigarette smoke to pyroclastic

smoke is only a few settings.

39

• 22:00, 00:10, 36:50

Now you can press your simulate button.

Your little assets is on their journey to be

molded

By that custom sim you have created.

• 22:10, 00:25, 36:25
As your simulation run let’s talk about your

Infrastructure to support your simulation.

Not all simulations are designed equal.

Each algorithm and software package

handles a simulation slightly different.

They have different needs and wants like real people.

I’m not saying you need to commune with your boxes,

Please go ahead if it will help you,

but it’s important to know if the

Algorithms are CPU, GPU, Memory, or disk dependent.

-In games we live in a world of microseconds,

-in simulations we live in a world of microseconds too.

• 22:35, 00:10, 36:15

We’re going to hit up your basic hardware options,

Percolate about the requirements of your workstations and Farms

Discus this pesky thing called Time,

And chat about the data we are creating.

• 22:45, 00:55, 35:25

Your hardware per each box or node, The CPU, GPU, RAM, and SSD

are going to be taxed more than any other form of 3-D content creation.

Usually people simulating have special computers to account for this,

and the needs are usually quite different than the needs of a modeler.

If you are rendering a texture array,

most “offline” renderers are designed for the logical cores of a CPU, the more the

merrier,

in commercials and films we often deal 24, 32, or 64 core boxes at our desk.

However some parts of algorithms are single threaded,

Like Rigid Bodies depending on the implementation,

less so each day, but high clock cores won’t hurt.

If you are running particles, volumetrics, or flip fluids,

these algorithms, inherently loves to be distributed through the GPU.

Other simulations like to store a lot in RAM

imagine several million particles, you hold it in easy to access memory

So each frame you can continue their journey uninterrupted

Some simulations are so fast that the read write to your disk will actually be largest

impact.

I was going to graph this, but it’s got ugly real fast, and for each possibly setup,

my page had white lines all over it quickly so this is very dependent.

43

• 23:40, 01:05, 34:15

The goal of your artist workstations is to efficiently

use a person time,

and to do less web browsing.

The hardware to process your sim can be split into

two categories,

a workstation, an artist dedicated computer,

And a farm, a series of machines used to distribute

processing.

These do not need to be mutually exclusive.

Leaving the hardware in a server room or in the

cloud is a great option.

Cost Ratios are what differentiate the hardware for

each of these.

It also the major difference between indies and

major studios.

Your goal between your workstation and your farm

is to reduce the time your artist are idle,

Usually the shorter sims are the biggest culprit, It’s

easier to get distracted and loose peoples attention.

An extra set of cores or a better GPU for a few

hundreds dollars, For your artist workstations

Can save you tens of thousands over the course of

a year from distraction and time wasted.

Longer sims are definitely a burden in their own

right. These should never really go longer than

“overnight”

We are in games after all, and trying to make a

profit

Plus the quality to cost ratio is never in your favor

for longer sims

Also be aware that traditionally there are no GPU on

44

a server farm,

GPU have generally been associated with display

units, and there are no monitors in a server rack

This is changing, but be aware of it for your

simulation needs.

44

• 24:45, 00:25, 33:50

Your Farm…

This could easily be a talk in and of itself.

These are a series of questions to ask yourself

You can very easily spend a lot of money here.

And either see the return, or just throw away your money.

To start off from categorically.
Do you have money to pay for a farm?

Do you have the time for open source?

Does your DCC have a native farm, or are you using multiple DCC?

Is the cloud an option?

What would be the cost of sending your stuff to the cloud,

to process it and get it back.

• 25:10, 00:25, 33:25

The follow up questions are onto the more

technical nature.
What is your operating system?

How secure does your data need to be?

Are you having your friend do it at his house?

What software, simulation, and hardware do you need on the farm?

Whose going to maintain this farm?

You’ll need hardware, IT, and wranglers skill sets or people depending on your

scale.

In the end you do not want to give some one a free bit coin farm.

I have listed a few other bullets to ask about, too.

As these are some of the hundreds of questions to ask.

• 25:35, 00:10, 33:15

As there are hundreds of farms out there you can use nowadays,

And they all service a very diverse set of options

So spend your money wisely.

• 25:35, 00:10, 33:15

Time is the key component of your simulation at this point.

By Simulations very definition,

• 25:40, 00:10, 33:05

Do you remember that stereotypical slide I had before?

Simulation is the imitation of an Operation over TIME!

• 26:00, 00:25, 32:35

This is what no one plans for or budgets for.

In games we work in real-time, even content creation is WYSIWYG

As this time

….stretches on…

We don’t want to relive it,

So we write out the data per each frame

This creates intermediate data that can become huge

This could be more than the rest of your combined studio output.

Simulations are Big Data the Art edition.

We’re talking about gigabytes and terabytes of data.

Which if you are moderate size studio requires infrastructure.

But do not worry for the long term, this is temporary data. You can delete it at the

end of the Game

As long as you make sure to check in all the source, and scene files.

• 26:25, 01:15, 31:20

Let’s talk about this middleman data we are

storing.

It’s actually a very complex story.

• 26:25, 01:15, 31:20

This data is intermediate,

you can think of it as the equivalent of your

highschool physics book

It’s a unique book for each content creation

package,

It’s with you until your class is over,

and hopefully it’s in your brain in a much lighter

format in the end.

• 26:25, 01:15, 31:20

Every version of your sim creates a new set of this

data.

Don’t stomp on the previous sim however,

As you use the previous version to compare the

difference,

Or when there are major changes, or you present a

version.

You won’t need to save every iteration,

because then your truely saving terabytes of crap.

But you need to save the version that matter

version 4, 7, and 9.

I usually only keep 3 for disk space issues.

Your scene file is the important thing to save in this

case, not the data.

With your scene file you can always re-export it,

especially when the art director likes the first version

with a small tweak.

53

• 26:25, 01:15, 31:20

The complexity can go up as you have tiered

simulations.

One simulation drives the next simulation.

A character animation that drives a rigid body

simulation,

That spins off a Flui and Finite Element Solver

And a particle solver,

That also drives a volumetric solver,

All so that the car can crash

into a baby carriage that crumbles

That is full of bottles,

That go flying everywhere,

Spraying liquid,

And the car blows up in Michael Bay fashion

54

• 26:25, 01:15, 31:20

With this many simulations, you will approves each

iterations in tiers.

As the first sim gets approved on version 7,

the next in the series may not get approved until

version 2 or 10.

• 26:25, 01:15, 31:20

So in consequence to all of this,

The data needs to be version controlled,

And uniquely stored so that you can access,

Multiple versions and iterations at any time.

• 27:40, 01:15, 30:05

Now that you have all this data sorted, you need to

share it.

Either with your co-workers or the farm.

If you are a solo operation this may not be as large

of an issue.

But imagine you’re a moderate size company, you

higher in contractors to do work for you.

They come and go as the project changes.

If you are in crunch you don’t want to re-sim

everything they just did.

Or if they need help you should be able to open it

from your desk.

This is where you will need some fat pipes to share

your data.

The simplest setup is to just have a virtual drive

that everyone can access

and work directly from this drive.

When you start getting to a larger studio you’ll need

Storage Area Networks, and Enterprise Network

Switches,

not those little ethernet hubs that you and your co-

workers kick at your desk.

I’m talking about serious rack mounted machinery.

Ask your friendly IT person they’ll be able to help.

At a large enough capacity you become a full on

data center,

imagine google’s and amazon’s warehouses of

computer.

This may seem silly, but check your ethernet

cables,

And make sure they were not made in the 90s

Plus install a dual network card on the workstations

You do not want to be bottle necked when you are

not working locally.

If you do keep your sims with all their assets inside

57

one machine it will be faster,

but it’s hard to give yourself dynamically more

space.

57

• 28:55, 00:10, 29:50

So your asset has been sliced and diced,

and now you have some clay to mold.

Odd’s are your sim will not be perfect right after it sims.

However the data is like clay to a sculptures hand.

• 29:05, 00:15, 29:35

As you massage this data

There is a few different items to get your hands dirty

with.

A last bit more on the art of your sim,

then procedural cleanup,

followed by destructive hand editing.

And your interchange formats

• 29:20, 00:45, 28:55

Depending on how much you art direct, and how

hero the asset is,

your simulation may just be an art guide for your

animators,

and that is OK.

So during the course of your simulation you did

your best to get it right the first time,

this is never easy as simulations can be complex

monstrosities

there is a reason we use computers to handle the

complexity

inherent with calculating the velocity, mass,

collision, forces, et al.

The alternative is to hand animate every piece,

while a skilled animator could handle this,

the turn around time for them between iterations

would be unprofitable.

However your animators are your best friends in

this,

they have spent years studying motion, and they

can tell you when motion feels correct.

They can even supply you with basic motion, timing,

and beats to best art direct the simulation.

To the extreme point you need to be comfortable

with,

it may in the end be best for an animator

to take your preped geometry

and hand animate on top of it.

60

• 30:05, 0:45, 28:10

After you have art directed and corrected

You want to do some procedural cleanup

This is a type of automated cleanup that is

dependent on your sim method.

For instance, we often did sims with a thousand

pieces, That look great in the dcc,

but when you put it in the game and you go

storming past it, it’s not as cool as you remembered

it.

So you need to do cleaning and reduction.

You have to deal with textile density. Vertex

density.Bones density.

The order of operations of creation and deletion of

your data.

Traingulation over motion

Regional Culling of stray pieces

Swapping out your simulated data for higher

or lower resolution final geometry

This could even be removing geometry

from it’s entire existence of your sim

Doing any attribute/property cleanup or remaping.

And any Diagnostic operations depending if your

exporter handles it,

or if you expect your artist to do it.

61

• 30:50, 00:55, 27:15

The alternative to procedural is destructive

cleanup

You need to be very clear to all teams that the sim is

LOCKED

so that no new geometry can flow through it. As it

will no longer dynamically update.

If you are authoring textures

Where you take it into photoshop and just paint out

artifacts in your normal maps

You can do this with your texture arrays in after

effects.

If you are just remapping colors, you can do this

procedurally and automate it

This is not a bad thing, but be warned if you

process requires this everytime

it will quickly become a time suck.

For adjustments like these survery your artist

and make sure this is not a common task.

If it is repetative then you should develop a task that

you can automate it.

This can be animating stray geo that rolled funny

and is too hero to cull.

This can be using your world builder, and doing

some fine tuning to it.

Or this can be scultping edges of your terrain.

62

• 31:45, 01:00, 26:15

Once your sim is cleaned up you need to transfer it

to your game engine

and amongst your other dcc.

This is where your interchange file formats come

in.

Your simulation data depending on the content you

are creating,

can be extremely different than your normal data.

You can not use a lossy format like in your engine.

And you don’t need the editing capacity of the dcc.

So which file format for sims are the best???

We found for geometry Alembic was the best

choice for our studio,

First it is open source, so we don’t have to pay for

it.

Secondly we can edit the internal format to how we

use it best.

We don’t need to piggy back additional xml files

along side it like obj.

It can read any line or frame of data at any point

For a vastly better Read/Write ability than FBX.

I can play back a whole destruction scene of several

buildings in real-time

and an animator can still do their job.

One issue is the fact is that it does not natively

support rigs,

For your character style rigs I would still recommend

FBX

However, you can amend alembic to handle this.

One inherent issue with all interchange format

is the fact that no two packages natively read and

write them the same,

so you need a wrapper to prep the data and saves

button clicks.

63

• 32:45, 00:45, 25:30

For texture based mediums

You often be exporting non-standard data with

your sims,

This could be geometry caching data. Displacement

maps.

Or even more arbitrary engine data

So please never use a lossy format, such as, jpg.

You’ll need ranges that can hit up to 32 bits of data.

So unless you are having hard drive limits

And/or are writing straight texture color,

Png style formats are not good.

The next wrung are files like tiff or targa which are

workable.

And are a known quantities

However if you are building from scratch,

Or are you revamping for HDR,

OpenEXR is a format from this century.

Proven and designed to handle this type of data.

It’s highly flexible and it’s open source so you can

re-arrange the data how you need it.

64

• 33:30, 00:40, 24:50

Now comes the long haul.

You need to be able to maintain these asset over

the course of a production

Once an asset has been created it’s not the end

of it’s life,

as the levels evolve and the engine changes you

need to keep on fine tuning it for shipping.

To squeeze it into an acceptable download, or on to

disk.

We’ve been talking about a dynamically adaptable

pipeline to this point,

so this would seem by it’s nature it will cause chaos.

And YES in large portions there is some janitor work

involved to unify some of these scenes..

What you are making is a living set of code, more

than a static model.

So as the level updates and changes from concept,

to design, to block out, to your first and second art

pass,

through your bug fixing passes.

And that final tweak before shipping.

You need to manage this data.

65

• 34:10, 00:30, 24:10

Will cover handling that data from a few different

areas.

Iterative level design, and geometry updates in

general affecting your sim.

I’m going to talk about the concept of code review

versus node reviews,

this is about bridging programing and art at the

scene file level.

Will talk about ways to standardize your scene,

we are doing a lot of unique items, but inherently

there is a lot of similarities.

Then will talk about pipeline rot with this system,

asset databases relevant to simulation work.

Planning and budgeting for the amount of work.

And managing people’s expectations

when you are working on the big moment.

66

• 34:40, 01:20, 23:00

In our example case I’ll take the our moment of the

Kraken Reveal.

This was one of the first levels to be set up for Halo

5

early in the production

so it inherently had it’s issues to begin with,

and we we’re just setting up this pipeline in that

time.

This scene was done by two artist,

we ended up switching shots after the first concept

of this moment evolved.

However we didn’t design anything at this point to

be dynamically updated as the level changed.

And we learned right away why this was a bad idea,

as this was the opening salvo of shots updating.

And there was no way in hell we could repeat

setting scenes up from scratch each time something

changed.

and get anything to ship.

67

• 36:00, 01:15, 21:45

So we setup a process to handle dynamically

changing geometry.

From iterative level design in our setups.

Will go from the micro level on this and expand it out

to the macro over the next few slides.

This section will be a bit more Houdini focused.

The first thing was to standardize our imports,

from our downstream dependencies.

If your familiar with asset tracking this was our first

step.

Knowing and being notified when your downstream

level is updated.

Via communication, e-mails, and software

notifications.

Our asset pipeline does not have a rugged taging

per a primitve system,

For dependent teams, which I highly recommend.

So we got flexible and made all the selections

based on relative bounding areas.

It allowed us to have a flexible tolerance for a door

changing designs,

As long as the door remained within a reasonable

range.

We standardized our disk caching and game asset

exporter.

So that no matter what scene you are in you could

easily find them.

We made a rule of building a complete asset within

in one container.

So if you needed to share it, duplicate it, or navigate

it there was no missing files.

68

Including designating our in and out points for each

context. So they were clearly readable.

We set up standard internal scene based

dependency triggers

To be able to remotely reprocess the scene.

This helped beyond just updating incoming

geometry

As our intermediate and final game files updated

their formating over the project.

For the Kraken Reveal that was two dozen assets

update and set up for review by clicking on one

button.

68

• 37:15, 01:15, 20:30

So our simulations can be described as very organic

code, as opposed to just straight content.

As the scene file is more important than the final

output.

So with this similarity it was suggested to do a node

review.

just like a code review is done in programming.

At first I was hostile to this, I’m still mostly an artist.

However, it is a valid argument,

that is for any submitted code you do you have it

reviewed by your peers,

the same way would work for node setups.

Plus, Node sound like Code…

This would prevent having vastly different method of

doing the same thing.

In principal this would save a lot of maintenance and

head ache.

The other side is we have a methodology while

technical is still more Art than code.

How ever you are forcing your artist to work in “the”

way.

To balance this out I asked a jury of my peers,

who deliberated and came back to me with this.

If a studio has pre-defined standards, workflows,

and tools

before they get there this is acceptable.

So as Halo 5 wrapped up we made presets of our

most standard workflows,

we made tools out of anything that was common

amongst the workflows,

and we setup up coloring and naming standards so

69

that the easiet way forward was together.

This reduced our janitorial work, in what we

currently think is a happy medium.

And we were abe to easily out perform when it

came time for a year of DLC content.

I’ll reference these are available of Orbolt.com later.

69

• 38:30, 01:20, 19:10

So in order to make a happy medium i broke down

our setup into a couple of descending basket.

First is the studio wrapper, this controls my larger

environment variables,

scene sets up, node color, naming configurations,

etc.

Research & Development or prototyping time is

adhoc.

You are going to try a dozen different example files,

a whole bunch of different methods

as you fail fast. Most of this work is throw away, but

you make sure people version up,

branch, and document what they did. You don’t

leave around giant trees of dead nodes and scene

files.

Temproary Tools, are parts of your R&D that have

coalesced into a repeatable workflow.

This is a proto workflow into something you really

want to give to any one else yet.

You ahve figured out enough of the common buttons

to partially wrap it up.

These are usualy the bi-product of a sequence or

level area

where you will use the temporary tool setup for a

short time,

but it might not be used elsewhere.

A workflow is a repeatable pattern of work, this is

usually a sequence of smaller tools

that you can link together to make an item. I’ve

created Texture Array Setups, RBD setups etc.

The next phase are presets. This is an array of

70

tools,

that give you an asset right away, you can still move

things around, but there is less need.

Tools are when every element of your system is

setup

and you can just pound a button to create hundreds

of assets.

These may also be smaller components that do very

specific pieces of work like exploded views, or fuel

setup.

With all of these inplace prior to some one working

at the studio

you can safely catch them up and walk them

through the setup.

70

• 40:50, 00:45, 17:25

Pipeline rot happens as the engine and tools update

After content has been completed.

Your Game/Pipeline Testers will discover almost all

these bugs and issues,

that can cause you to re-run a sim as you notice

something doesn’t look right.

Give a shout out to Dan for his help.

On over a hundred unique scene files this can get

pretty severe.

All those tools need to be very carefully version

controlled,

and when you choose to update your software

you need to be able to re-verify everything is

working.

with performance testing tools

Carefully calabrating these can be painful for tools

that consume agnostic data.

Keeping your tool set simple is key.

My current tool set does not range more then 25 to

40 tools the artist can access,

and I continuously hide or update tools depending

on their usage history.

I have also setup batch scripts to re-open every

scene files and re-process all the assets.

You may only need to re-cook the middleman assets

into their final formats.

71

• 41:50, 01:00, 16:10

Maintain a database of your assets and their

intrinsinc properties.

This becomes really important towards the end of

your project.

When you have a large enough team,

and you can’t keep track of every thing they have

produced.

Over the long haul shit breaks, it ROTs,

you need to clean and optimize stuff, your golden

path shifts.

Some one tells you that once you won’t touch

something you are now up close in your face.

But if all your contractors are gone, or you buddy

that you are working with is on vacation,

you need to be able to track down those assets find

where they were created,

What software was installed, and what they need to

fix.

Having this databased is awesome.

Also since you might be working on somethign that

is fairly complex

it will prbably have a larger than average footprint.

This footprint is usually the first thing noticed at

performance reviews.

So if you can track every piece of info on that asset

from a webpage in the performance review

you are that much closer to being out of the

production eye.

Plus yu can make intelligent decision on what

should be cut.

I would highly recommend that this is auto

72

populated and updated on every export.

The simplest ui you can give to an artist to fill out

And other intrinsics on what this assets is for is

helpful.

72

• 42:50, 01:00, 15:10

When it comes time to budget for work,

I have a series of multipliers I use.

The base component defined by your team skillset.

But these work as a general rule of thumb,

Research & Development is relative to the effect

you are working on,

but you should be able to get something out in a

day,

2-3 days for a middle level R&D,

and a week to a sprint for a pretty complete asset

you have never done before.

For an entire level building system at a AAA studio

this could take a year,

but you are talking about across the studio changes,

not a single moment.

Workflows and presets are equal to your base

amount of work,

As theses are the known quantities you have

produced before,

And you can budget based on that task

The more workflows and presets you have the

quicker projects becomes.

If the work has been done often and has been

encapsulated into a single tool

You could literally create hundreds of thousands of

versions,

and these can be torn down and updated quite

easily.

Finally a re-sim should take the smallest

perecentage,

However,This is relative to the complexity of the

sim.

73

• 43:50, 01:00, 14:10

The other thing we constantly encountered with this

pipeline

is that we were working on the bigger momments of

the game.

These are the point in time where the consumer sits

back and takes a breather,

or else they are in the true middle of the shit.

In order to handle this you need to help

Educate people on your process,

Budget your time accordingly and manage the

people involved.

This is on top of your simulation work.

A lot of our simulations we did were the eye candy.

And when eye candy happens you want to do

something new and unique.

Nobody wants to see the same thing over and over

again

as these big moments are when the story builds up.

As we described our pipeline needs to be adaptable

for these moments,

So thus we work out of workflows and presets to

make these custom unique options,

So we inherit a lot more pereceived R&D time

naturally in our process.

This means we need to budget for it accordingly

This also means you need to manage peoples

expectations for each review

That the quality may not change drastically from

their last viewing

If your quality does not perceive to change,

It is hard to judge from an outside point of view why

it did not change,

So this is where clear education and communication

matters.

It helps keep level heads, and allows you to

adequately make proper decisions

74

• 4:50, 01:00, 13:10

I made this graph on a napkin note originally during

a production meeting

To convey our workflow expectations, as a

generalized production curve.

I’ve found it helpful to handle perceptions

The blue line, in a traditional pipeline, such as

texture painting, is a very common workflow,

The quantities are known and it’s a bit linear,

Half way through the process you expect to see

50% of the quality,

The red line, is usually simulated content,

especially for building unique assets,

Where even with a known quantity you need to

prepare,

And do the necessary simulation work which takes

half the time

Before you start over working on quality and

iterations.

The most important line is the green line, this is the

Eye of Production.

You are working on that extremely unique moment

or asset, that E3, that level show piece.

All the eyes are on you!

The rest of studio will thank you as they have a

breather as you are constantly in review

This is where content will get killed, even if you are

meeting or exceeding your deadlines.

It’s extremely important to take a minute, Breath

and get everyone on your team on the same page.

On what their expectation of your process are.

75

Everyone is invested in making the best product you

can

Within the scope you made available.

But this can only be conveyed in a simple upfront

manner.

75

• 45:50, 00:30, 12:40

Now we have hit the conclusion of the talk,

So we covered today how to create a hybrid type of

pipeline

A simulation based pipeline.

I hope you learned something new,

or refreshed something for your studio

No matter the size and the capacity of your

production.

Simulations can allow you to create far more

complex content than

You would normally be able to author by hand,

and I hopefully I shared some of my experiences to

make it easier.

76

• 46:20, 00:30, 12:10

So coming in to the end of the talk,

I hope you have your questions ready, I have 4

slides left.

::point to the mic::

So in a final review of the categories we talked

about.

If you remember the random items I had you write

down.

Those will be helpful talking points for you to take

back to your peers.

First of we have your type of content to focus on.

How to prepare that content for your simulation of

choice.

How to best set up the infrastructure for that sim.

How to massage the data,

and reveal its inner beauty.

And then how to maintain that data

For a happy and long relationship.

77

• 46:50, 00:45, 11:25

I’m going to recommend two talks right now this

week,

if moving geometry does interest you.

If you want to learn how for Halo 5 my team got over

a million transforms at 60FPS

In order to play those simulations in real-time

Please come to Zabir and mine talk on

Geometry Caching Optimizations on Friday at

10am in the North Hall.

This is a bit more programing and engine than this

talk.

Zabir will show a lot of details our runtime

compression method.

I would also highly recommend as a precursor talk

to

Mario Palmeron and Norman’s talk on “The Illusion

of Motion”

It was work down in unknown parallel to ours.

But it is a great introductory to core concepts

prior to us cranking that technology to 11.

78

• 47:35, 00:40, 10:45

Since this talk was an overview of simulated

content,

And if you want to dive in and start simulating

content today,

Here are a few recommended jump starts.

As far as access to the tools I have used in

production,

You can get them directly from inside Houdini

Via http://www.orbolt.com/search/?q=LaidlawFX

In addition with the launch of Houdini 16

A lot of games setups have been fully integrated into

Houdini,

Meaning you get direct support from SideFX now.

For any additional production help with Houdini stop

by the SideFX booth,

They can gladly point you towards specific tutorials

related to simulated content.

79

• 48:15, 00:15, 10:30

So we are about to break,

So if you do not want to get up in front of the

room on the microphone

And you want to ask a question after this talk

Please join me in the wrap up room down the

hall.

• 48:30, 00:40, 09:50

I’m also available after GDC to communicate with

through a few methods.

First via Slack through Tech-Artists.org

@LaidlawFX

Or through Odforce.net if you like the forum format.

Or you can even e-mail me at

GDC2017@LaidlawFX.com

Thank you all for coming!

And I hope if you enjoyed the talk.

And if you did, Please fill out the Survey.

I and all the speakers would greatly appreciate it.

I am happy to answer any questions now

And for the next few minutes.

81

