
LABS Logo Reveal

1

Here is the agenda for today!
Let me explain you who we are to better understand our process when attacking a
new tech.

Hi,
Glad to be here with you all, thanks for choosing us as your kickoff conference of
the day
I know it’s early and I’ll try to keep you all awake until the interesting stuff kicks
in!

I guess this funnels me to my intro : 37 yo, proud father of two including a 18
months old baby boy.
This might only resonate to the parents of young kids in the audience, but it’s a
relaxing moments right now with you all!
Born and raised in Montreal, by an Italian father and a French Canadian mother,
which explains the weird name combination there.
I spent ten years in gaming specifically, coming from aerospace industry. Those
ten years where mostly spent in mainly two studios.

[CLICK]

Apologize in advance as I extracted that information from a corporate deck.
But let me draw your attention on some of those facts.
Eidos-Montreal moved into its early teenage years, celebrating its 10 years
anniversary not too long ago.
Over those years, in which I was an active participant for over 7 now, the studio
built itself a strong reputation in Montreal and around the globe.
Strong installments of beloved franchise such as Deus Ex, Thief and Tomb Raider
that helped accomplished this positioning.
The points here and in the next slides, that drives the most of my attention are, of
course, innovation and creativity, but also honesty and respect!

[CLICK]

The studio is creating great titles from great IP, but all of this done through an
enjoyable environment.
A respectful approach towards its most valuable asset: its employees
It’s done through great overtime and crunch management policies for instance, or
strong balance between work and family .
Amy Hennings wrote an interresting paper in GameIndustry.biz a few months
back, which I recommend you if you haven’t read it yet.

Let say this straight, the active developper’s community is growing older and we
have changing expectaction towards our employers.
Which is fine!
We’ve seen this trend in other studio too, kindergarden in the office, access to
doctors, etc…
We’re like a big familly and our returning employees’ rate is a great indication.

[CLICK]

So moving on to Who is LABS.
Well, it all started when our Head of Office regrouped a bunch of released
resources to push the technology barrier and to act as a single unit.
We were folks from different fields of expertise, who strongly collaborated
together in the past and knew each other’s strenghts.
We’ve had fighting moments, stress moment, tears and all that we experienced in
our respective game teams, right?

Then, the rest of the numbers are there:

-SLIDE-

[CLICK]

What are the expectation for LABS, well pretty straight forward and easy to
understand… not so easy to put into application.

Solve complex industry problems, or at least grow our understanding of those.
It’s limitations, workaround
There are problems we are all struggling with, independently at which studio you
work.

Attempting to address issues that is an actual problem we are suffering with but
also being aware of problems to come.
My team try investing the right amount of time avoiding this to ever become a
production showstopper.

Then sharing!
Sharing the knowledge gathered or even proven solution with sisters’ studio to
help positioning our products.

#1 - Industry problems

Some problems are well documented. Multiple solutions were proposed by expert

and big brains already

But others are totally new issues that we need to investigate and build knowledge

about it, a better understanding of it.

#2 - Researching different solution.

Aiming at resolving a problem with the first solution that emerges, could show that

the solution is not that strong on the long run.

#3 - Search all possible solutions, best fitting a given context.

#4 - Constructive, collective and associative mentality is part of LABS success.

The collaboration is important in my team.

#5 - We regroup conception, prototyping and implementation under one roof.

The idea is to prove its value, quickly. Fail fast and often to find a strong winner.

#6 - “what makes sense” and “who are we innovating for”.

Keep the focus on the clients’ need and not try to solve some personal fantasy
while at it.

Let me guide you through the team achievements, done in only 3 years of
existence.
First Rise of the Tomb Raider

9

LABS’ contribution in Rise of the Tomb Raider includes the creation of 6 main

graphic features that brought a lot of focus on the game.

Those features are among some of the best technical achievements in RotTR

according to some press release and my biaised self.

We have lead multiple, direct and indirect, promotion of the games’ technical

achievements, through major industry events and literature.

Two years of continuous collaborations with almost all of LABS’s member.

Working on over 10 different new features, including some that never made it in

the final product.

Tackling, at the same time, the integration of « mainstream » features required by

our innovation.

Then moving on now to Deus Ex: Mankind Divided

13

The proximity with Deus Ex’s team was a strong advantage. The different studio

experts were accessible resources, collaborating with us.

This lead the group in tackling some of their biggest challenges:

Such as the iconic feature called TITAN Shield & Vignette.

This mutual confidence allowed the game team to benefit from many of our

previous researches.

A role expected from LABS is the sharing of technology when applicable, and in

worst case the sharing of knowledge gained, as broad as possible.

With this in mind, LABS worked hard in providing DXMD with features such:

• Unique PureHair solution

• Motion Blur integration

• Volumetric Lights integration

• Particle Lighting R&D

Lots of knowledge shared with this group.

Our collaboration with the team is still active on day-to-day basis.

Being an important pillar to Eidos-Montreal, LABS was heavily involved in sharing

back some of our innovation with the community.

Additionally, LABS co-promoted technology with industry leading partners as

AMD, Autodesk and Hewlett-Packard, only to name a few.

And Hitman game

17

LABS was looking forward to collaboration with Io-Interactive’s talented team.

The different work have got us collaborating for a little over 1 year.

We had the chance to work together on 3 different unique graphics features, including an Ocean

Technology.

Proud of the work done, LABS naturally promote the Ocean technology in
different ways, explains our presence here with you today.

While Nic take the mic, let’s have a look at the prototype of the work done with a
short video.

Hi!
My name is Nicolas Longchamps

I am a Technical Artist in the LABS group at Eidos Montreal.
I’ve been in 3D for a little over 16y… already!
With about 9y of that spent at Eidos
My Background is mainly in Graphics and VFX,
And on the technical side of things, I’m mostly self-taugh,
Which I think is not very unusual for technical artists.

I’m also a proud dad, and I can bake a pretty decent loaf of bread.

So to start id like to note that this talk is not about a revolutionary ocean

implementation but a practical one.
Water surfaces are a difficult topic in realtime 3d,
And my hope today is that I can add to the community bag of tricks for creating
realtime water surfaces.

During Hitman production,
Roughly around mid to end 2014
IO Interactive approached us for help to create a solution for their in-game water
surfaces, specifically ocean rendering.

They wanted an efficient, lightweight solution that was up to par with current
methods, and could be easily implemented in a variety of contexts and have some
support for physics interactions.

From the supplied maps and reference, I could also see other non-trivial features
like transparent water, an arbitrary shoreline, and the fact that you could both
walk along the beach and view it from a high vantage point with an unobstructed
view to the horizon in several directions, hence the title for this talk :-)

This implied a seamless transition of surface detail from close up to kilometers
away.

Physics interactions included floating objects such as buoys and small boats,
ballistics,
and this being a Hitman game of course, ragdolls a.k.a dead bodies.

Supporting physics became the initial focus, as this would drive how the rest of
the effect would be designed and function.
Meaning the solution had to be CPU-Physics friendly.

So we started looking at what was done at the time,
and there were a lot of implementations to choose from;

Assassins Creed Black Flag had a nice solution, which sort of became my visual
benchmark for the effect.
Even though high seas sailing wasn’t necessary for us

Uncharted,
Far Cry
and KillZone are some that also stood out at the time.

All very nice solutions using interesting techniques. And all with different contexts
and requirements.

Of course there was also the obligatory read of Jerry Tessendorf’s paper on Ocean
Rendering,
the gold standard for ocean simulation in Cinema VFX, but also more recently
applied in some AAA titles.

-“Assassin’s Creed III: The tech behind (or beneath) the action”, Mike Seymour,
FXGuide 2012
-“Water Technology of Uncharted”, Carlos Gonzalez-Ochoa, Naughty Dog, GDC
2012

There are a lot of open water solutions, but unfortunately few for quality beach
interactions,
except for offline and expensive SPH or FLIP particle simulations.

And it is difficult to find any solutions that offer a seamless integration of both
open water and quality beach interactions.

Solutions that tackle open water well usually have limited beach interactions if any.
The effect sort of lives inside a tank.
And a lot of times the water displacement simply clips the beach, or is attenuated
by distance field or water depth textures.

(Spoiler Alert!)
I don't think I've completely solved this problem myself, but hopefully I’ve taken
some steps in the right direction.

So to start: what do we need to make an Ocean surface?

Well… we need a surface, of course
That seems obvious
but what kind of surface? How is it created?

Is it procedural or static?

How is it parametrized?

How is the geometric screen density handled?

Open water is simpler but what about our beach?
And how to transition from our beach to open water?

Common choices for surface generation are simple static geometry (a user
authored model asset), a screen projected grid or a system of multiresolution
patches.

Static geometry can be okay if you have a limited vantage point and are able to
statically distribute geometry form a known point. This isn't our case at all, and
we wanted to avoid handling a LOD system.

The screen projected grid is a popular choice for good reason. It is by nature
restricted to the frustum. No frustum culling necessary. Screen geometric density
is constant and distribution is more or less ideal. Parametrization for shorelines can
be an issue however, as no Uvs or other vertex data can be localized on the mesh
itself. Localized data has to be then stored in implicitly mapped textures or by other
means.

Patch systems incur some system overhead and require seam stitching at the
borders of patches where different resolutions meet. They also have the same
parametrization issues as the screen projected method.

Hardware tessellation was something I had wanted to apply to water for awhile.

At labs we had implemented it for our Titan Shield effect in Deus Ex,
and afterwards more extensively in our snow deformation effect in Rise of the
Tomb Raider.

During the development of that feature, we had tested hardware tessellation
against a comparably dense static mesh and found hardware tessellation to be
much faster.

Using tessellation would allow for parametrization and arbitrary topology of the
base mesh where necessary, meaning I could UV map my shoreline if I required to
do so. Also, transitions in geometric resolution would be automatically handled,
so no stitching algorithms or LOD meshes are necessary.

So for the ocean, we are using authored mesh as a base for tessellation, but as a
very sparse hull mesh.

For tessellation we employ a simple distance-to-camera adaptive tessellation
technique with a non linear falloff.

Tessellation density can be kept constant to a given distance. After that, possibly
due to angle of incidence, I found that I could have the geometric density falloff
much quicker than linearly with little noticeable effect in quality.
Tessellation is also kept to within the camera frustum.

In the Shader, the camera distance function is computed in the vertex shader and passed
on to other stages for modulating the tessellation factor, displacement amplitude and
other shader effect weights.

As for the final tessellation factor, there are a lot of guidelines for tessellation.
Most simply state to keep it below a certain number. But this doesn’t take into
account the initial geometric density. My base mesh has huge triangles. So this is
not really helpful.

The one guideline I found most useful and stuck to was keeping screen density in
check, that is to avoid having triangles smaller than a 16px screen area in order to
maintain rasterizer efficiency.
I found this info in an AMD Developpers presentation ; The AMD GCN Architecture

- A Crash Course, by Layla Mah.

When setting edge and face tessellation factors, only edge factors handled. Face factors
are simply and average of the former.

The AMD GCN Architecture - A Crash Course, by Layla Mah
https://www.slideshare.net/DevCentralAMD/gs4106-the-amd-gcn-architecture-a-
crash-course-by-layla-mah
slides 59-63

https://www.slideshare.net/DevCentralAMD/gs4106-the-amd-gcn-architecture-a-crash-course-by-layla-mah

With the exception of the beach variant base mesh, which ill explained later,
the base geometry is very sparse.

It’s a radial ocean mesh roughly 800m across, divided into hectare patches (100m
x 100m). The total mesh diameter was found by placing circles representing a
desired view distance at several extreme positions in the map.
These areas were then encapsulated within a larger circle representing the final
extents of the ocean surface geometry.

Base geometric density (before tessellation) is 1 vertex per every 10m. Keeping a
uniform distribution of triangles will allow to better control tessellation density.

Permanently occluded geometry can be removed, but cuts are kept on the 10m
grid as to keep the uniform triangle size.

The beach mesh is a special case.

Here we want Uvs and vertex color data for our shore waves.
We also want a close topology match with the shoreline. So the 10m grid goes out
the window in this case.

For modeling, I found it best to model both the water and floor of the shore from
the same waterline curve.
This allowed for matching topology and Uvs on the shore floor, which could be
subsequently be synched to the shore water effect and used for a “wet sand”
animated effect.

We still want to have the borders of our beach patch match the 10m grid, as to not
have tears when displacing.

However now we have problem for tessellation;

Tessellation will divide all triangles by the given amount no matter what their size.

Keeping to a 10m grid kept a homogeneous triangle size and perfectly uniform
subdivision. But now we have smaller triangles with the same tessellation factor,
giving us some very dense and unnecessary geometry. And ultra dense geometry is
bad for rasterizer efficiency as we saw.

So we want to keep tessellation density relatively uniform, and to do that we
encode a tessellation bias value into our vertex color data.

Here in the image Ive applied a color ramp so that it looks cool,
but its really a scalar value.

For water patches marked as “beach type”, this vertex data is used in the Hull
shader to bias the tessellation factor.

To find the bias value, we process the geometry in our DCC and find each triangle’s
area. Going back to our 10m grid, we know a “normal” triangle has an area of
(10*10)/2 = 50m2. Triangle areas are therefor normalized to 50m2, giving a 0-1
size ratio that can be encoded into a color channel.

Ratios bigger than 1 are clamped.

When applied, smaller triangles are proportionally tessellated to a lesser degree.

So we have a surface,
Now we need a method to move points our around.

Displacement is pretty common in games now, but for water it should be noted
that a height function is really not sufficient.

Water churns and moves; Lateral movement is necessary to properly sell the
effect. So we’re not looking for simple height displacement but rather vector
displacement.

A note on Compute Shaders,

We did quickly look into a Compute approach, but decided against it,
fearing latency issues that would incur when getting the modified mesh back from
GPU in order to perform CPU Physics.

Maybe we could have used GPU Compute to generate a vector displacement &
normal maps at runtime, but this would have brought with it a fixed tiling pattern
that would have to be managed.

We also wanted to avoid doing CPU texture fetches for physics as much as
possible.

Black Flag had a good implementation using I believe offline generated vector
displacement maps but we ultimately did not explore this route.

Wanted a stateless function.

Other than vector displacement maps, what other methods have been applied?
Uncharted made use of low frequency gerstner waves along with higher frequency
“particle waves” and an additional “mega wave” deformer.

Our mandate did not call for such rough seas, but I liked the idea of artist placeable
waves.

We did look into FFTs, or Fast Fournier Transform ocean deformation as outlined in
Mr. Jerry Tessendorf’s 2001 paper, “Simulating Oean Water”.

FFT waves are maybe not a good name. The fast fournier transform here is a
component of a larger set of equations based on statistical models found in
oceanographic literature. There is a reason FFT waves are pretty much the gold
standard for ocean simulation in cinema, the method produces some very
convincing results.

Although advancements in available CPU-GPU power in games hardware have
recently made FFT waves more viable, as seen in the more recent Just Cause 3’s
Nvidia Waveworks implementation, they remain computationally intensive.

(And for a poor technical artist, a bit mathematically intimidating!)

Math complexity put aside though, FFT waves have some issues to consider:

By nature of existing within a domain, they tile both spatially and periodically.
The spatial tiling cant be fixed, only managed.

They can be difficult to “get right”
and generating normals or CPU-side surfaces for physics requires more FFTs.

For very water-centric games, the cost may be worth it.

“Simulating Ocean Water” 2001 , Jerry Tessendorf

But for us, I went back and revisited Gerstner waves to drive our effect, starting
from the well known GPU Gems article,
“Effective Water Simulation from Physical Models”, by Mark Finch.

Despite maybe being considered obsolete, …for cinema at least,
Gerstner waves have some nice properties that shouldn’t be overlooked ;

Gerstner Waves are computationally efficient,

and the function is easy to derive in order to generate a surface normal and
tangent basis.

They might not be as realistic as FFT waves, but they can also offer convincing
results given the proper setup and parameters.

Although there is also a periodic element to Gernstner waves, each wave is
independent and not tied to a domain, so it’s easier to manage repetition.
One easy way to break repetition, which we implemented, is to employ a low
frequency phase noise texture to the waves.

“Effective Water Simulation from Physical Models” , Mark Finch, GPU Gems 2004
NVidia

The deformation effect was separated into three water categories, (or behaviors) ;

Generic “open water” waves, areas where there is no directionality or influence
from land masses.

Coastal waves would still be open water, but here you would have some
directionality and conformity to the coastline.

& Beach waves. Where water actually makes contact with a land mass and the
contact line needs to be handled somehow.

Water towards the horizon has no displacement so we’ll talk about that later.

Open water is the generic, non-directional motion of the water. This is the base
layer of the effect.

Its a mix of 8 Gerstner waves arranged in a way to cover all directions without
canceling each other out and create wave motion not biased to any particular
direction.

While we’re talking about mixing Gerstner waves, there are a few points I can share
on the topic…

If you’re like me, your first instinct would probably have been to mix many
wavefronts
Just randomly pack them on,
thinking more waves = more detail!

Not necessarily it turns out,

What happens is like adding noise on top of noise, values eventually converges to
the median value.

And in our case, since we’re doing bidirectional displacement, the median value is
zero. So the more wavefronts I added to the system, the more my water surface
got flatter. Basically all of the delta positions were cancelling each other out.

So more is not better,
Not at similar frequencies at least. Which brings the second point…

Separate your wavefronts into frequency groups.
For example, we have a low frequency group of 3 wavefronts, and a high frequency
group of 5 wavefronts.

Generally the lower the frequency, the less wavefronts you want to use.

Doing this I found Is a good way to manage the complexity of the effect:
Separating into groups allows to unify the controls for the waves in that group,
and simply apply variance to the individual waves, making the overall effect easier
to control.
Additionally, you may want to skip a high frequency group when sampling
positions on CPU for physics. Or any other instances where you might need a low
fidelity height sample.

And finally the obvious :
You want to break symmetry as much as possible, so odd numbers are your friend.
Add variance where you can and avoid having anything on axis. Our 3 wavefronts
are radially distributed, and our 5 high frequency wavefronts start from the reverse
direction, so no directions in the same group overlap and overall the directions are
well distributed.

Conceptually, ocean surface is composed of an infinite amount of random
wavefronts.
But realistically, waves interact. Collide, exchange energy, they die, separate,
merge. Of course our waves don't do that. They simply add. This is also the case
for an FFT ocean surface I believe. I'm inclined to say that these are not technically
simulations, like you would have with SPH or FLIP particle solutions, where a finite
data set is updated through a solver.
We have no data set to update, but we can control how the waves are added and
the base positions from which they are computed.

So I find there’s basically 3 methods to sum Gerstner waves, in reference to when
they get applied to the base :
Sequentially, Summed delta positions or Summed deltas by Group.

The first method is to simply sequentially add the waves, so that each wave is
computed from positions deformed by previous waves. This isn’t a great method
and is difficult to control. One reason I dislike it is that the first wave is deformed
by all the subsequent waves, but the last wave isn’t deformed at all. So the
“weight” of each wavefront is not really equal.

The second method, as seen in GPU Gem’s Gerstner water surface equation, is
computing all waves from the base position and then adding the summed delta
positions in one go. This way all waves have an equal effect weight. However since
they all are computed from the base position, the waves don’t deform each other,
which is a nice effect to have.

The third method takes advantage of the fact that we’ve separated our
wavefronts into frequency groups. In this method we sum deltas, but we apply
them to the base position between groups.
So the base position here is deformed by previously applied groups.

And we go in descending frequency order, which is important.
This is so that small waves get deformed by large waves, as would make sense in
reality. The bigger the wave, the more inertia.
I also found this method to be much less sensitive to pinching at the crests than
simply summing deltas,
And still allowed for waves to be deformed by each other, like with the sequential
method,
but in a more controllable manner.

For coastal waves, you want to have more directional waves, fitted to the
curvature of the shoreline.

To do this we first looked into parametrizing the mesh. But that would require a
lot of unique assets and the results were not great. It was also difficult and tedious
to have localized control for things like intensity, speed, etc.

We also wanted a friendlier process than baking into texture assets.

Inspired by Forward Lighting, we had the idea to create a simple system of artist-
placeable “wave objects”.

These objects work a bit like forward lights in the shader.
Each wave object adds 3 wave samples per vertex, and the shader allows for up to
4 wave objects per mesh.
The worst case scenario is therefore 20 wave samples (8 omnidirectional + 4 * 3
localized) per tessellated vertex.

Each wave object holds a set of parameters and passes these to the shader as
constants. This allows the user to control area of effect size (radius), direction,
wave amplitudes and curvature of the wavefront.

In order to support curved coastlines, it is possible to warp the wavefront along
the wave direction:

The wave curve parameter allows for bidirectional warping in order to obtain a
convex or concave curved wavefront.
This also helped to reduce the number of wave objects necessary to follow the
shoreline.

So we solved the tessellation issue for arbitrary geometry

And we dont require crashing waves, which makes things easier

But how to get the water to slide onto the beach?
The player can walk along the beach, right up to the water, so just letting the water
clip is not an option.
Attenuating the deformation to a static position along the shore is common, but I
wanted to go for that sliding effect.

And to do this,
The beach interaction relies on a baked depth slice of the scenery, which is
sampled by the ocean shader for the beach variant and allows the vertices to
know the height of the beach at their location during displacement. This allowed
to have the ocean mesh “slide” onto the beach mesh when moving.
This is as simple as selecting the maximum height between the displaced vertex
and the sampled beach height.

A full scene height map sounds a bit intense, but we know the water height, so
from there we can cut around that and maximize depth resolution in the small
strip of height that we really need.

The height map only stores a 4m wide layer of height, a 2m spread from the water
height, which allows for an acceptable height resolution of ~1.56cm when packed
into an 8bit texture alpha.

For area, roughly 4 texels per square meter seemed sufficient.

Since we now have this texture covering the map, we also encode a distance field
from the shoreline for use when masking foam.

OK, onto rendering.

Water is a volume,
And because of that a lot of the shading effects are not on but rather under the
surface. So if not volume rendering, which in games is probably the case, you have
to at least process what's behind the water surface.

As per the requirements, we went for a lightweight method,
And thankfully we did not need to manage going into or under the water surface.

Shading parameters were mostly simplified to absorption and scattering,
represented using a LUT texture mapped to linear view depth.

The shader also made use of a quarter resolution render target for underwater
geometries, allowing blurring, refraction, caustics and optionally dispersion.

For the underwater plate,
we render the scene into a quarter resolution offscreen buffer before the
translucent passes.

From here we reconstruct world position from depth in order to generate world
coordinates over all of the scene geometry

The caustic effect itself is very simple; its a static caustic render, just a single image,
distorted by a panning low frequency normal map. It does the job pretty well, and
besides the effect will be further perturbed by the surface refraction effect.

We then use the generated worldpos as Uvs in order to project our caustics effect
over everything.

We don't really care about masking or distance here :
Elements above the water obviously wont be visible in the underwater image.
And elements far off in the distance will be obstructed by absorption.

After the caustics are applied, we make a copy of the texture and blur it, so we
have a blurred and unblurred version of our underwater, which we can later blend
using depth.

Further effects will need to be applied in the surface pixel shader, since we will
need the surface pixel location.
This is because we cant just use depth, we need depth from surface.

When rendering the surface in the pixel shader

We get 2 UVs based on world position. Pre & Post deformation.
Pre-deformation coordinates will (unintuitively) be deformed by wave motion, so
this is what we use to map surface textures like foam and normals.

I do use an offline FFT ocean surface in order to bake normal maps for water. This
really makes the best water normal maps I find.
The periodic nature of FFTs works to our advantage when baking normal maps :
they tile perfectly.
We use these wave normal maps to represent the highest frequency waves on top
of the deformation waves.

Once we have normals, we can (quote-unquote) refract our UVs for sampling our
scene depth and underwater plates.

In the pixel shader we also have the pixel depth, so we can compute eye depth
from surface. Obviously if you want to accumulate an effect like absorption, you
don't want to start from the eye, but rather the point at which the eye ray
intersects the surface.

With linear distance from surface, we then map both blurred and unblurred
underwater plates and blend them along depth to a given input distance.

So why blur the water, is that PBR?
Probably not.
But blurring I find helps a lot. Real ocean water has a lot of effects going on.
Underwater haze, micro refraction from very small surface ripples and and under
the surface from microscopic bubbles, dispersion and other difficult effects.

I find blurring works visually to convey the impression of a different, heavier
medium below the surface.
Without I find often water rendering looks like just air behind a deforming glass
pane.

So after this, we apply our Absorb/Scatter LUT

Absorption works along eye depth from surface, and is multiplicative. The far point
is black, as that is where light would be mostly absorbed underwater. For ocean
water this depends on the wavelength, but 200m is generally the point at which
almost no light passes in open water.

Scattering is a more complex effect and doesn't really work along eye depth, but
for simplicity and efficiency, that's what we did.

A downside to LUT textures is the iteration rate when tweaking values. In my case I
made the LUT as a function in substance designer so I could rapidly regenerate the
texture when changing the gradients.

We then apply our cubemap reflections & specular highlights and an SSR pass is
done in post.

For Foam, its masked using both a shoreline distance field, and a vertex height map
computed from our waves.
While accumulating height in the domain shader, total added height is tracked in
order to normalize the final height value.

For texturing, a trick taken from Black Flag : Mutliple densities of foam are packed
into a single texture, and mixed together in the shader depending on the grey value
of the surface foam mask.

The effect supports dynamic surface ripples from interacting floating physics
objects as well as ballistic impacts. These don’t deform the surface but rather
contribute to the pixel normal.

Whats cool though is that they also contribute to the underwater caustics.

The SSR method mentioned before is a fast, simplified no-raytrace SSR which uses
the plane equation of the water surface rather than the real surface and normal.

For the beach waves, we already have our sliding water effect from the
deformation.
And the beach mesh also has UVs along that strip of polygons.
So to complete the effect, a two-phase cross fading uv animation is used.

To desync the animation along the length of the shoreline, the cosine of UV.x
offsets the phase of the animation.

And because we matched the topology of the water edge and beach, and have
matching UVs, we can implement the same animation on the sand in order to
achieve a “wet sand” effect.

For the Horizon…

Although the base geometry extended out several hundred meters, the edge of
the mesh could be seen especially from certain elevated vantage points.

One traditional solution is to simply create a gigantic grid and scale it until you just
cant see the edges anymore.
This however requires a large far clip value which does affects depth distribution.

So Instead I recycled a trick I used to map procedural skies.

For lack of a better name I dubbed the effect “horizon mapping”, simply because it
generates planar coordinates to the horizon line
but I think the term might already used elsewhere in CG. (So if anyone has a better
name for it, let me know)

Here we use the world camera vector and world camera position.
(and assuming a Y-up coordsys) we divide Camera Vector XZ by Y which gives us
infinite planar coords on the XZ plane.

They’re camera-centric though, so we adjust using world camera position to
compensate.

The result is planar coordinates that match world coordinates perfectly,
so if you are using world coords to map textures, such as is the case for our ocean,
the textures mapped to the horizon mapping should line up perfectly and there will
be no visible seam (assuming the pixels are shaded the same way of course).

Normal maps here don't require transforming, other than swapping Y for Z or
other coordinate adjustments, since were already aligned with the world axis.

The world camera vector on the support geometry should be exactly the same as
on our virtual plane, so with the mapped normal we can get a reflection vector on
the virtual surface as well. This gives us enough to shade the surface and match our
real ocean geometry.

Because the effect’s support geometry can be relatively close, the camera far
plane doesn’t need to be at a very high value which is better for your scene’s
depth distribution.

Pixels above the horizon line are clipped simply using Camera Vector Y,
and the virtual plane is shaded using a simplified version of the ocean shader.

Reception of the effect by the team was pretty good. The placeable wave
modifiers were especially liked.
Here we can see them used as waves from the waterfall.

The effect proved versatile enough to be used in many contexts across the game.

One nice example here is the bubbling water in the natural spring.
I believe they cleverly used an inverted Gerstner function here.
It looks pretty good!

Many size contexts as well,
Anything from small pools to lakes to oceans

Of course eventually we had to ship the feature… with still a lot of interesting ideas
to explore.
And lots of ideas come after a step back, and id like to share some of those;

Better shore waves.
Our effect did not call for surf waves or crashing waves
But still I wish it had a bit more deformation there.
More gerstners? Probably difficult to control for shorewaves.
Animated displacement maps? Maybe a better idea given our uv animation is
already there.

Alembic
Not really an option at the time, but Alembic offers some interesting avenues to
explore.
Mesh caches could allow to precompute and play back complex simulations and
surface deformations, deferring the computation cost to bandwidth.
Precomputed crashing wave simulations would be nice.
Lots of things to solve and explore on this end though. Bandwidth cost would be a
question, how to apply to a mesh with dynamic resolution would be another. How
to blend Alembic deformations together or with other deformations.

Better subsurface lighting/scattering
Absorption works with linear eye depth from surface, but not scattering, that’s a
complete hack. A volumic ray march from surface would have been nice here,
maybe in the ¼ resolution buffer using a uniform water level.

Finally
Better Foam
If you look at photos of ocean surf, you see that water is bright where the foam is.
And this is that foam is really not strictly a surface thing like it is usually
represented;
There’s a lot of air bubbles mixed in just under the surface.
So I don’t think you can really get realistic foam until you also capture this effect.
Maybe a raymarch through a foam heightmap from the surface?
Or maybe a simple parallax effect with blurred foam would do.

So That’s all for me
Ill now pass the floor back to Jean Normand

Of course, we haven’t done this alone and we’d like to thanks some great brains
who helped us achieve this all.

