

Replicating Chaos Vehicle Replication in Watch Dogs 2

Matt Delbosc

Team Lead Programmer **Ubisoft Toronto**

Network architecture

- 4-player peer-to-peer
 - No single server
- Lots of entities to replicate
- Distributed authority

Why are vehicles hard?

- They drive fast
 - 100ms lag could mean 2-3m difference
- They collide with each other
 - Lots of traffic in the Watch Dogs 2 open world
- The human eye is very sensitive to irregular velocities

What we will cover

- Debugging trajectories
- Standard techniques: Projective Velocity Blending (with a twist)
- Extrapolate and/or interpolate with Snapshot Buffers
- Dealing with collisions by blending with the physics simulation
- Some unsolved problems
- Future research directions

Trajectory Debugging

- Path Taken
- **Snapshots**
- Prediction

Projective Velocity Blending

Maths from Wikipedia

$$V_b = V_0 + \left(\acute{V}_0 - V_0
ight) \hat{T}$$

$$P_t = P_0 + V_b T_t + rac{1}{2} cute{A}_0 T_t^2$$

$$\acute{P}_t = \acute{P}_0 + \acute{V}_0 T_t + rac{1}{2} \acute{A}_0 T_t^2$$

$$Pos = P_t + \left(\acute{P}_t - P_t
ight) \mathring{T}$$

What this looks like

Turn Prediction

- Extrapolating a turning car with a straight line is not ideal
- We transmit the wheel steering angle
 - But the vehicle physics simulation is complex
 - Cannot predict an accurate turning trajectory from this
- We already transmit vehicle's position, velocity and angular velocity
 - Use yaw from angular velocity to predict turn
 - Doesn't work for drifting cars, but not an issue for our game

Snapshot Buffer

- Buffer snapshots and interpolate between last 2
- Pro: More accurate trajectory
- Con: Rendering objects further back in time

Too much interpolation

Rendering objects that are further back in time

Extrapolation vs Interpolation

- We don't have to interpolate
 - Can still extrapolate from last received snapshot
- Introduce a "time offset"
 - How far back in time do we render this car
 - Look at (Current time) (Time offset):
 - Time falls between received snapshots => interpolate
 - Time ahead of last received snapshot => extrapolate
 - Snapshots are timestamped

How it looks

Time Offset

- Choosing the time offset is not easy
 - Too much interpolation causes missed collisions
 - Too much extrapolation causes discontinuous trajectories
 - Balance between the two
- Used (average measured lag) + (constant value)
 - Damped
 - Clamped at 300ms
 - Constant value in the 100ms 200ms range
 - Proportional to vehicle speed

Vehicle collisions

- Dead reckoned trajectories are now looking good
- Let's crash some cars

What happened?

Both cars should stop, or push each other out of the way less forcefully

- Look at it frame-by-frame
 - Internal tool to help with this

GDC GAME DEVELOPERS CONFERENCE | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Can we solve this?

- The replica that pushed you doesn't know about the collision yet
 - They will keep driving forward until a new packet arrives
- This is an unsolvable problem!
 - No one has full authority over the collision
- Gee I wish I had a server 🕾

Physics Simulation Blending

- The collision has happened whether we like it or not
- Give local physics a chance to simulate the collision
- Then blend back into to the dead reckoned trajectory
- Tunable blend between two velocities:
 - Velocity applied by the rigid body simulation
 - Velocity to reach the dead reckoned position
- Representing something believable locally, then blend into snapshots that take the collision into account

- Play out lots of collisions and choose what looks good
 - Max blend factor to use while in a collision
 - How quickly to go back to full dead reckoning afterwards

Collision Unpredictability

- Locally simulated collisions won't play out the same on both peers
- Blending replica out of locally simulated collision into dead reckoned trajectory could be jarring
- Before the collision starts, try to bring vehicles closer to their master positions
 - Make them more likely to play out the same

Collision Prediction

- Predict imminent collisions and extrapolate more in those cases
 - Unlikely to steer out of the way
 - Use existing algorithm from AI systems

Unsolved Problems

- Some of many outstanding problems:
 - Collisions with static geometry
 - Time offset differences
 - The uncanny valley

Different Time Offsets

Pedestrians prefer interpolation

Similar issue for breakables, but less gameplay impact

The Uncanny Valley

- Trajectories are correct, but it still doesn't feel right
 - Minor weight shifts lost in replication
 - Cars don't rotate around their centre of mass
 - Human eye is sensitive to even minor inconsistencies
- Apply some post-process smoothing
 - Smooth velocities and angular velocities, not positions / rotations
 - Has to co-exist with Projective Velocity Blending

Future Investigations

- Machine-learning based algorithms
 - Self-tweaking variables!
- Smoothing algorithms
 - Kalman filters

Take-aways

- Debug your trajectories
 - Record everything
- Somehow there is still a lot of art to this science

MORE QUESTIONS? MEET ME ON THE UBISOFT LOUNGE

TODAY from 2PM to 3PM

(WEST HALL, 2ND FLOOR)

#UBIGDC

matt.delbosc@ubisoft.com

