
Replicating Chaos
Vehicle Replication in Watch Dogs 2

Matt Delbosc
Team Lead Programmer
Ubisoft Toronto

Network architecture
 ● 4-player peer-to-peer

● No single server

● Lots of entities to replicate

● Distributed authority

Why are vehicles hard?
 ● They drive fast

● 100ms lag could mean 2-3m difference

● They collide with each other

● Lots of traffic in the Watch Dogs 2 open world

● The human eye is very sensitive to irregular velocities

What we will cover
 ● Debugging trajectories

● Standard techniques: Projective Velocity Blending (with a twist)

● Extrapolate and/or interpolate with Snapshot Buffers

● Dealing with collisions by blending with the physics simulation

● Some unsolved problems

● Future research directions

Trajectory Debugging

Path Taken

Snapshots

Prediction

Projective Velocity Blending
 Maths from Wikipedia What this looks like

Turn Prediction

● Extrapolating a turning car with a straight line is not ideal

● We transmit the wheel steering angle

● But the vehicle physics simulation is complex

● Cannot predict an accurate turning trajectory from this

● We already transmit vehicle’s position, velocity and angular velocity

● Use yaw from angular velocity to predict turn

● Doesn’t work for drifting cars, but not an issue for our game

Snapshot Buffer

● Buffer snapshots and interpolate between last 2

● Pro: More accurate trajectory

● Con: Rendering objects further back in time

5 Frames

Too much interpolation
● Rendering objects that are further back in time

 Master

Master Replica

Replica

Extrapolation vs Interpolation
 ● We don’t have to interpolate

● Can still extrapolate from last received snapshot

● Introduce a “time offset”

● How far back in time do we render this car

● Look at (Current time) – (Time offset):

● Time falls between received snapshots => interpolate

● Time ahead of last received snapshot => extrapolate

● Snapshots are timestamped

How it looks

3 Frames

Time Offset

● Choosing the time offset is not easy

● Too much interpolation causes missed collisions

● Too much extrapolation causes discontinuous trajectories

● Balance between the two

● Used (average measured lag) + (constant value)

● Damped

● Clamped at 300ms

● Constant value in the 100ms – 200ms range

● Proportional to vehicle speed

Vehicle collisions

● Dead reckoned trajectories are now looking good

● Let’s crash some cars

What happened?

● Both cars should stop, or push each other out of the way less forcefully

● Look at it frame-by-frame

● Internal tool to help with this

Can we solve this?

● The replica that pushed you doesn’t know about the collision yet

● They will keep driving forward until a new packet arrives

● This is an unsolvable problem!

● No one has full authority over the collision

● Gee I wish I had a server 

Physics Simulation Blending

● The collision has happened whether we like it or not

● Give local physics a chance to simulate the collision

● Then blend back into to the dead reckoned trajectory

● Tunable blend between two velocities:

● Velocity applied by the rigid body simulation

● Velocity to reach the dead reckoned position

● Representing something believable locally, then blend into snapshots that
take the collision into account

0 0.5 1 1.5 2 2.5 3

Elapsed Time (secs)

Car

Bike

100% Dead Reckoned

100% Local Physics

Blend Factor Tuning

● Play out lots of collisions and choose what looks good

● Max blend factor to use while in a collision

● How quickly to go back to full dead reckoning afterwards

In Collision

Collision Unpredictability

● Locally simulated collisions won’t play out the same on both peers

● Blending replica out of locally simulated collision into dead reckoned
trajectory could be jarring

● Before the collision starts, try to bring vehicles closer to their master
positions

● Make them more likely to play out the same

Collision Prediction
● Predict imminent collisions and extrapolate more in those cases

● Unlikely to steer out of the way

● Use existing algorithm from AI systems

Unsolved Problems

● Some of many outstanding problems:

● Collisions with static geometry

● Time offset differences

● The uncanny valley

Static Collisions

● Static objects don’t give way

● Trees are the worst!

● Some options:

● Stay out of position

● Soft physics collisions

● Teleport eventually

● Reducing jitters is the most important part

Different Time Offsets

● Pedestrians prefer interpolation

● Similar issue for breakables, but less gameplay impact

Master

Replica

Master
Replica

The Uncanny Valley

● Trajectories are correct, but it still doesn’t feel right

● Minor weight shifts lost in replication

● Cars don’t rotate around their centre of mass

● Human eye is sensitive to even minor inconsistencies

● Apply some post-process smoothing

● Smooth velocities and angular velocities, not positions / rotations

● Has to co-exist with Projective Velocity Blending

Future Investigations

● Machine-learning based algorithms

● Self-tweaking variables!

● Smoothing algorithms

● Kalman filters

Take-aways

● Debug your trajectories

● Record everything

● Somehow there is still a lot of art to this science

TODAY 2PM from to 3PM

matt.delbosc@ubisoft.com

