How to Write an Audio Engine (Part 2)

Guy Somberg Echtra

GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

- How to Write an Audio Engine
 - Part 1, apparently
 - Available in the GDC Vault
- It's pretty good! You should watch it.

- Sound Engine State Machine
- 3D Listener
- Multithreading
- Mixing
- Reverbs and Ambience
- Platform-specific stuff

Differences

GDC2015	GDC2017
99% Light Speed	90% Light Speed
151 Slides	95 Slides
Lots of code	Minimal code
8 State Machine Slides	3 State Machine Slides
100% Awesome	100% Awesome

Order of Operations

- Sound Engine State Machine Reprise
- Virtual Sounds
- Volume Sliders
- Obstruction/Occlusion
- Footsteps

First, a correction

MacOS/iOS have no sem_timedwait()

- True only for older API levels
- At Telltale Games, we were targeting older MacOS and iOS builds, so we were limited
- If you're targeting a newer version, then move on, nothing to see here...

Order of Operations

- Sound Engine State Machine Reprise
- Virtual Sounds
- Volume Sliders
- Obstruction/Occlusion
- Footsteps

GDC GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Games That Have Shipped with (Some Variation of) This State Machine

Hellgate: London	(1 st /3 rd Action RPG)
Mythos	(Dungeon Crawler)
Bioshock 2	(FPS)
The Sims 4	(The Sims?)
Tales From the Borderlands	(Telltale Adventure)
Game of Thrones	(Telltale Adventure)
Unannounced Echtra Title	(Secret)

GDC GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Order of Operations

- Sound Engine State Machine Reprise
- Virtual Sounds
- Volume Sliders
- Obstruction/Occlusion
- Footsteps

What is a Virtual Sound?

- A sound that's not important enough to hear
- For the purpose of controlling:
 - Performance
 - The mix

Examples

- Small fires spread throughout your large level
- A bullet impact a mile away
- The third enemy firing a machine gun from the same guard tower
- Ambiences (while scoped in with a sniper rifle)
- Footsteps (while firing your machine gun)

How to virtualize a sound

- One-shots:
 - Don't even bother playing the sound
 - Check only during ToPlay
- Looped sounds:
 - Fade over 0.25-0.5 seconds
 - Stop the channel
 - Check regularly

Virtualization Checks

- Must be cheap/fast
- Must be configurable
- Must be short-circuitable

My Common Three Checks

- Out of Range
- Volume is sufficiently close to silence
- Max Within Radius

Walter Murch

- <u>http://transom.org/2005/walter-murch/</u>
- Law of Two-and-a-Half
- "...if there was one robot, his footsteps had to be in sync; if there were two robots, also, their footsteps had to be in sync; but if there were three robots, *nothing* had to be in sync. Or rather, any sync point was as good as any other!"

Applying the Rule

Applying the Rule

Applying the Rule

Making the Rule Work

- Performance
 - Iterate only over matching sounds
- Configuration:
 - Each sound has "Max Within Radius" and "Radius"
 - Greater flexibility: "MWR Group"

Virtualization

- Quick to implement
- Extensible
- Effective way to clean up the mix

Order of Operations

- Sound Engine State Machine Reprise
- Virtual Sounds
- Volume Sliders
- Obstruction/Occlusion
- Footsteps

GDC GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Ever Had This Experience?

The music is Main Menu way too loud New Game Load Game Settings Quit

Settings Menu

Live Demonstration

Why Does This Happen?

- The volume slider is linearly interpolating from 0..1
- But sound is logarithmic!

What is going wrong?

http://www.dr-lex.be/info-stuff/volumecontrols.html

How to Fix It

- Instead of being linear, the slider should be *exponential*
- Because log(exp(x)) = = x

GDC GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Enough Hand-Waving!

- We have y = a * exp(b*x)
- At x = 1, y = 0dB
- At x = 0, y = (Your dynamic range)

40dB worked well for me

Math!

GDC GAME DEVELOPERS CONFERENCE[®] | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

The Pink Box at the End of the Chapter

- y = a * exp(b*x)
- d = chosen dynamic range
- $a = 1/(10^{(d/20)})$
- $b = ln(10^{(d/20)})$

Show Me the Code!

```
const float dynamic_range = 40.0f;
const float power = powf(10.0f,
                       dynamic_range / 20.0f);
const float a = 1.0f / power;
const float b = Logf(power);
volume = a * expf(slider_value * b);
```


Live Demonstration

Better Yet...

- Do this in your volume sliders, but...
- Mix your game properly, so that the players don't have to fiddle with the volume
- There is an argument for not having volume sliders at all!

Order of Operations

- Sound Engine State Machine Reprise
- Virtual Sounds
- Volume Sliders
- Obstruction/Occlusion
- Footsteps

First, the basics

- Obstruction
- Occlusion
- Exclusion

 Colloquially: Obstruction/Occlusion, or just Occlusion

Occlusion

Obstruction

Exclusion

Occlusion Summary

- Occlusion:
 - Direct path obstructed
 - Indirect path obstructed
- Obstruction:
 - Direct path obstructed
 - Indirect path unobstructed

- Exclusion
 - Direct path unobstructed
 - Indirect path obstructed
- No Occlusion
 - Direct path unobstructed
 - Indirect path unobstructed

GDC GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Truth Table

		Direct Path	
		Occluded	Unoccluded
Indirect	Occluded	Occlusion	Exclusion
Path	Unoccluded	Obstruction	No Occlusion

Mapping to Actual Effect

- Direct Path
- Indirect Path

Mapping to Actual Effect

- Direct Path = Volume/Low Pass
- Indirect Path

Mapping to Actual Effect

- Direct Path = Volume/Low Pass
- Indirect Path = Reverb Send

Actual Effects

- Occlusion:
 - Volume reduced
 - Low Pass Filter
 - Reverb send reduced

- Obstruction:
 - Volume reduced
 - Low Pass Filter
- Exclusion
 - Reverb send reduced

Finding Direct/Indirect Path

- Option 1: Do nothing
- Option 2: Raycasts
 - Variation 1: 1 Ray
 - Variation 2: 5 Rays
- Option 3: Pathfinding

Finding Direct/Indirect Path

- Option 1: Do nothing
- Option 2: Raycasts
 - Variation 1: 1 Ray
 - Variation 2: 5 Rays
- Option 3: Pathfinding

Option 1: Do Nothing

- Advantages:
 - Cheap!
 - Easy!
- Disadvantages:
 - No audible effect

Finding Direct/Indirect Path

- Option 1: Do nothing
- Option 2: Raycasts
 - Variation 1: 1 Ray
 - Variation 2: 5 Rays
- Option 3: Pathfinding

Variation 1: 1 Ray

Raycast Variation 1: 1 Ray

- Advantages:
 - Simple to implement
 - Relatively cheap
- Disadvantages:
 - Only includes direct path information
 - Indirect path must be simulated

Raycast Variation 2: 5 Rays

Raycast Variation 2: 5 Rays

- Advantages:
 - Still relatively simple to implement
 - Still relatively cheap
 - Discovers indirect path to area around listener
- Disadvantages:
 - Even more raycasts
 - Coarse indirect path discovery

Finding Direct/Indirect Path

- Option 1: Do nothing
- Option 2: Raycasts
 - Variation 1: 1 Ray
 - Variation 2: 5 Rays
- Option 3: Pathfinding

() UBM

Pathfinding

• Advantages:

- No rays!
- Path itself provides information on direct and indirect occlusion
- Path length can be used for attenuation
- Disadvantages:
 - Pathfinding may be more expensive than rays
 - Information on direct/indirect occlusion must be inferred from path

Verdict

- No option is necessarily better than the others
- Choose the option that is appropriate for your game
 - Performance
 - Memory
 - Audible Effect

Order of Operations

- Sound Engine State Machine Reprise
- Virtual Sounds
- Volume Sliders
- Obstruction/Occlusion
- Footsteps

Attenuation model exception

I IRM

- How to detect footsteps
- Footstep materials
- Footstep volume
- Variations

Α

Α

В

Remember this?

- No?
- Okay, quick recap...

GDC^{*} GAME DEVELOPERS CONFERENCE^{*} | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

C

Α

Put the Listener in the Camera

B

Α

Select an Attenuation Position

C

В

() UBM

Measure Distance to Attenuation Position

A A B D_C D_A D_B

Α

Find Normalized Vector to Listener

В

Reposition Sounds

Α

 $D_A D_B$

В

- Attenuation model exception
- How to detect footsteps
- Footstep materials
- Footstep volume
- Variations

Detecting Footsteps

- Option 1: Animation Trigger
- Option 2: Location Trigger
- Option 3: Collision Trigger

Animation Trigger

- Designer tags animation with footstep events
- Easy enough
- But: blending multiple animations can be problematic

Blending Problems

33% and 66%

25% and 75%

What do you do when blending walk and sidestep?

Location Trigger

- Trigger when bone reaches minimum point in local space after going above maximum
- Works with blending!

Location Trigger

But...

- Position checks every frame
- Can miss a minimum due to framerate
- Does not detect collision with ground

Collision Trigger

- Attach collision shape to bone and trigger whenever it collides with the ground
- Similar to location trigger, but eventdriven
- Works with blending
- But requires care

- Attenuation model exception
- How to detect footsteps
- Footstep materials
- Footstep volume
- Variations

Footstep Materials

- Find material by:
 - Doing a short raycast downwards, or...
 - Swap materials based on entering/leaving zones
- Limit material set:
 - Is water really that different from gore?
 - Is concrete different from tile?

Material Fallbacks

- Default sound per character
- Fallbacks per material type
 - e.g. Gore falls back to water, concrete falls back to tile...

- Attenuation model exception
- How to detect footsteps
- Footstep materials
- Footstep volume
- Variations

Footstep Volume

David Steinwedel:

- Are footsteps important to your game?
- Will anybody miss them if they're not there?
- If you answered No to both, then don't bother with footsteps at all.

Footstep Volume

- Player footsteps are important when the player starts to walk, less important 10 seconds later
- Use mixing tools to describe the desired behavior

- Attenuation model exception
- How to detect footsteps
- Footstep materials
- Footstep volume
- Variations

Variations

- Lots of source sounds
 - Don't forget heel/toe vs. toe/heel
- Volume/Pitch variation
- Lowpass Filter

Variations

- Be extreme in randomization
- Footsteps are by far the most commonlyplayed sound in the game

- You can go nuts
 - ...but should you?

Summary

• If you remember nothing else from this talk, this is the most important slide...

GDC GAME DEVELOPERS CONFERENCE" | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Summary

- Virtual sounds: A little bit of tech goes a long way
- Volume Sliders: Use the code that I showed
- Occlusion: Choose the method that works best for your game
- Footsteps: Never has so much effort been spent on a feature that so many people care so little about

Shameless Plug

CRC Press Expo Booth #301

Questions?

- guy@gameaudioprogrammer.com
- Also, come to my Audio Programming Roundtables!

Fundamentals Wednesday 2:00-3:00 Advanced Topics Thursday 4:00-5:00 Free-For-All Friday 11:30-12:30

