

The Latest Graphics Technology in Remedy's Northlight Engine

Tatu Aalto Lead Graphics Programmer

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

The Latest Graphics Technology in Remedy's Northlight Engine

Tatu Aalto Lead Graphics Programmer

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

The Latest Graphics Technology in Remedy's Northlight Engine

Tatu Aalto Lead Graphics Programmer

GAME DEVELOPERS CONFERENCE[®] MARCH 19–23, 2018 EXPO: MARCH 21–23, 2018 #GDC18

Experiments with DirectX Raytracing in Remedy's Northlight Engine

Tatu Aalto Lead Graphics Programmer

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

REMEDY ENTERTAINMENT PLC. Founded in 1995 | Espoo | Finland | 165+ employees

BEST KNOWN FOR: Max Payne | Alan Wake | Quantum Break CURRENTLY WORKING ON: P7 (own IP) with 505 Games CrossFire 2 (Story Mode) with Smilegate Northlight engine and tools

Agenda

Quick introduction to DirectX Raytracing Area shadows Ambient occlusion Reflections Indirect Diffuse

Experiments with DirectX Raytracing in Northlight

https://youtu.be/70W2aFr5-X

Visibility based algorithms

Visibility based algorithms

Top Level

Bottom Level

Screen Space

Raytraced

Single ray per pixel on 1080p is roughly 5ms

1 rpp REMEDY®

2 rpp

FIEMEDY®

Shadow Map

Raytracing

Single ray per pixel on 1080p is under 4ms

Geometry

-

Geometry

Material parameters in buffer

extures in descriptor heap

3

Lighting

float

Reflections

Reflect

Screen Space

 $\phi\phi$

Raytraced

northlia

Ref

00

and the

9

Screen Space

northlight

0

Ref

00

and the

9

Screen Space

northlight

0

Re

 $\phi\phi$

and the

2

Screen Space

northlight

0
Re

 $\phi\phi$

and the

2

Screen Space

northlight

a m

A-C-C

ny O

0-0-0

1 14

0.0

3) 5

DYGENEG

Reite

plo-c

PERSONAL PROPERTY OF THE PARTY OF THE PARTY

States news

Fresnel *

10 an

BMBDYQ

Lighting * Material

11. 2.84

Conversion of the

1040

1 ray per pixel

+ 3 rays on bright pixels

and combine with small damping

pp-c-

Optimise by using shadow maps

Similar to AO, lots of non-coherent rays

LULI

GI stored in sparse grid

volume

Irradiance calculated based on static geometry and static set of lights

Dynamic geometry can receive light, but does not contribute to calculated irradiance

No contribution from dynamic geometry

Trilinear sampling creates

stair casing

Thin geometry causes light

leaking

REMEDY Q

Gather lighting by sampling radiance over cosine distribution

Account missing geometry

Direct sampling and AO

Raytraced Gather

Direct sampling and AO

de.

Raytraced Gather

de.

1-110

We can also sample

lighting on geometry hit

Direct lighting

Final lighting without reflections

nn () All

Final Lighting

Summary

- Easy access to state of the art GPU raytracing via DXR - Performance is getting there - Easy to prototype algorithms that don't fit to rasterisation - Possible to combine with existing low frequency structures

Benjamin Lindquist Janne Pulkkinen Juha Sjöholm (NVIDIA) Juho Jousmäki Pablo Fernandez Sami Kastarinen Stuart MacDonald Teppo Ylitalo Thomas Puha Elmeri Raitanen Ilkka Koho (NVIDIA)

۲

remedygames.com/careers

-Martin

0

