
INERTIALIZATION: HIGH-PERFORMANCE
ANIMATION TRANSITIONS IN GEARS OF WAR

DAVID BOLLO
PRINCIPAL SOFTWARE ENGINEER
THE COALITION (MICROSOFT STUDIOS)



ANIMATION TRANSITIONS



ANIMATION TRANSITIONS
● Transition from one animation state to another
● Typically a cross-fade blend between poses

Source

Target

Blend



ANIMATION TRANSITIONS
● Optimizations are often focused on the blend step
● Fast SLERP, optimizing cache and memory usage, etc

Source

Target

Blend



ANIMATION TRANSITIONS
● Biggest cost is evaluating both Source and Target
● Source/Target cost is much greater than blend cost

Source

Target

Blend



MULTIPLE CHARACTERS
● If we’re lucky…

● Only a few active transitions 
at once



MULTIPLE CHARACTERS
● But in the worst case…

● Everybody transitions at the 
same time

● Double the animation cost



CAN WE DO BETTER?
● Intuition: Real humans don’t “blend”
● (but they do have inertia)

Source

Target

Blend



CAN WE DO BETTER?
● IDEA: Eliminate blended transitions!
● Fix the discontinuities as a post-process

Source

Target

Blend



CAN WE DO BETTER?
● IDEA: Eliminate blended transitions!
● Fix the discontinuities as a post-process

Source Target



TRANSITIONS AS A POST-PROCESS



TRANSITIONS AS A POST-PROCESS



TRANSITIONS AS A POST-PROCESS



GOALS
● Respect the original animation
● No changes when not transitioning

● Believable and aesthetically pleasing
● Smooth and momentum-preserving

● Stay on-model
● No bad / unnatural poses
● No overshoot



IDEA #0: FILTER DISCONTINUOUS POSE
● Apply a filter to the output pose stream
● Difficult to tune
● Introduces lag
● Deviates from input even when not transitioning



IDEA #1: BLEND FROM POSE
● Capture pose difference between Source and Target
● Ease out the difference over time



IDEA#1: BLEND FROM POSE



IDEA #2: MATCH VELOCITY
● Capture pose difference between Source and Target
● Ease out the difference over time
● Remember Source velocity (via finite differences)
● Match initial velocity
● Quintic polynomial [Flash and Hogan 1985]

T. Flash and N. Hogan. 1985. The Coordination of Arm Movements: An Experimentally 
Confirmed Mathematical Model. Journal of Neuroscience 5, 7 (July 1985), 1688 – 1703



IDEA #2: MATCH VELOCITY



IDEA #3: LIMIT OVERSHOOT
● Capture pose difference between Source and Target
● Ease out the difference over time
● Remember Source velocity (via finite differences)
● Match initial velocity
● Limit overshoot by controlling initial acceleration
● Choose a0 to give us zero jerk at t1



IDEA #3: LIMIT OVERSHOOT



INERTIALIZATION



INERTIALIZATION



INERTIALIZATION – INITIAL VALUES

𝑥𝑥0 = 10000 − 10000

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

-1



INERTIALIZATION – INITIAL VELOCITY

𝑥𝑥0 = 10000 − 10000

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

-1

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2



INERTIALIZATION – INITIAL VELOCITY

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

0or

-1



INERTIALIZATION – ACCELERATION

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

0or

-1



INERTIALIZATION – ACCELERATION

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

0or

0or

-1



INERTIALIZATION – X(T)
𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

0or

0or

-1

𝐵𝐵 =
3𝑎𝑎0𝑡𝑡12 + 16𝑣𝑣0𝑡𝑡1 + 30𝑥𝑥0

2𝑡𝑡14

𝐴𝐴 = −
𝑎𝑎0𝑡𝑡12 + 6𝑣𝑣0𝑡𝑡1 + 12𝑥𝑥0

2𝑡𝑡15

𝐶𝐶 = −
3𝑎𝑎0𝑡𝑡12 + 12𝑣𝑣0𝑡𝑡1 + 20𝑥𝑥0

2𝑡𝑡13

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑡𝑡5 + 𝐵𝐵𝑡𝑡4 + 𝐶𝐶𝑡𝑡3 +
𝑎𝑎0
2
𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0



OVERSHOOT REVISITED



OVERSHOOT REVISITED

𝑥𝑥0 = 1.2
𝑣𝑣0 = −12.6

𝑡𝑡1 = 0.5



OVERSHOOT REVISITED

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.5



IDEA #4: CLAMP TRANSITION TIME

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.5



IDEA #4: CLAMP TRANSITION TIME

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.3



IDEA #4: CLAMP TRANSITION TIME

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.3

𝑡𝑡1 = min(𝑡𝑡1,−5
𝑥𝑥0
𝑣𝑣0

)



INERTIALIZATION ON ONE SLIDE

𝑡𝑡1 = min(𝑡𝑡1,−5
𝑥𝑥0
𝑣𝑣0

)

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

0or

0or

-1

𝐵𝐵 =
3𝑎𝑎0𝑡𝑡12 + 16𝑣𝑣0𝑡𝑡1 + 30𝑥𝑥0

2𝑡𝑡14

𝐴𝐴 = −
𝑎𝑎0𝑡𝑡12 + 6𝑣𝑣0𝑡𝑡1 + 12𝑥𝑥0

2𝑡𝑡15

𝐶𝐶 = −
3𝑎𝑎0𝑡𝑡12 + 12𝑣𝑣0𝑡𝑡1 + 20𝑥𝑥0

2𝑡𝑡13

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑡𝑡5 + 𝐵𝐵𝑡𝑡4 + 𝐶𝐶𝑡𝑡3 +
𝑎𝑎0
2
𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0



VECTORS AND QUATERNIONS



INERTIALIZING VECTORS
● Obvious choice:
● Inertialize x,y,z independently
● Visual artifacts if vx0,vy0,vz0 are too dissimilar

(because of transition time clamping)
● Instead:
● Decompose vector into direction and magnitude
● Inertialize the magnitude



INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2



INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2

𝑥𝑥0 = 𝑥⃗𝑥0



INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

𝑥𝑥0 = 𝑥⃗𝑥0



INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

𝑥𝑥0 = 𝑥⃗𝑥0

𝑣𝑣0 =
𝑥𝑥0 − 𝑥𝑥−1

∆𝑡𝑡



INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

𝑥𝑥0 = 𝑥⃗𝑥0

𝑣𝑣0 =
𝑥𝑥0 − 𝑥𝑥−1

∆𝑡𝑡

𝑥⃗𝑥t = 𝑥𝑥t
𝑥⃗𝑥0
𝑥𝑥0

+
t



INERTIALIZING QUATERNIONS
● Similar construction to vectors:
● Decompose quaternion into axis and angle
● Inertialize the angle



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

∗ ∗
-1 -1



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

𝑥⃗𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

∗ ∗
-1 -1

𝑥𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

𝑥⃗𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

∗ ∗
-1 -1

𝑥𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

Twist of 𝑞𝑞−1 around 𝑥⃗𝑥0
K. Shoemake. 1994.

Fiber Bundle Twist Reduction
Graphics Gems IV, 230 – 236

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

2 tan−1
𝑞𝑞xyz � 𝑥⃗𝑥0
𝑞𝑞w



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

𝑥⃗𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

𝑣𝑣0 =
𝑥𝑥0 − 𝑥𝑥−1

∆𝑡𝑡

∗ ∗
-1 -1

𝑥𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

Twist of 𝑞𝑞−1 around 𝑥⃗𝑥0
K. Shoemake. 1994.

Fiber Bundle Twist Reduction
Graphics Gems IV, 230 – 236

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

2 tan−1
𝑞𝑞xyz � 𝑥⃗𝑥0
𝑞𝑞w



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

𝑥⃗𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

𝑣𝑣0 =
𝑥𝑥0 − 𝑥𝑥−1

∆𝑡𝑡

∗ ∗
-1 -1

𝑥𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

Twist of 𝑞𝑞−1 around 𝑥⃗𝑥0
K. Shoemake. 1994.

Fiber Bundle Twist Reduction
Graphics Gems IV, 230 – 236

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

2 tan−1
𝑞𝑞xyz � 𝑥⃗𝑥0
𝑞𝑞w

𝑞𝑞t =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: 𝑥⃗𝑥0
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: 𝑥𝑥t

∗
t



BLENDING VS INERTIALIZATION



BLENDING VS INERTIALIZATION
Blending

● Evaluate both Source & 
Target during transition

● Variable anim frame cost

Inertialization

● Only evaluate Target 
during transition

● Fixed anim frame cost

Source

Target

Blend

Source Target



BLENDING VS INERTIALIZATION
Blending

● Manage multiple sets of 
state during transitions

● Adds complexity

Inertialization

● Only maintain one set of 
state during transitions

● Fire and forget

Source

Target

Blend

Source Target



BLENDING VS INERTIALIZATION
Blending Inertialization



BLENDING VS INERTIALIZATION
Blending Inertialization



INERTIALIZATION IN A GAME ENGINE



INERTIALIZATION IN A GAME ENGINE
● Inertialization Node / Filter
● Animation System Hooks
● Code Hooks



INERTIALIZATION NODE
● Evaluated after the main animation graph
● Input is discontinuous pose stream
● Output is inertialized pose stream



INERTIALIZATION NODE
● When a new inertialization is requested:
● Compute and store x0, v0 for all joints
● Store t1 and set t = 0

● Every frame:
● Update t with delta time
● Evaluate and apply x(t) for all joints
● Store the OUTPUT pose in the pose history buffer



ANIMATION SYSTEM HOOKS
● Add “inertialization” as a new blend curve type
● When a blend is requested with “inertialization” type:
● Inertialize with the supplied blend time
● Zero the blend time to bypass regular blending



CODE HOOKS
● Expose “Request Inertialization” to code
● Eliminate other types of discontinuities
● And other tricks…



TIPS AND TRICKS



SMOOTHING OTHER DISCONTINUITIES
● Gears of War 3:
● Snap character rotation when switching to sprint

● Gears of War 4:
● Snap character rotation when switching to sprint
● Inertialize away the discontinuity



LOCOMOTION FILTERING
● Gears controls are very responsive (twitchy)
● Filter inputs to locomotion blend spaces
● If filtered values are too far from actual values…
● Snap to actual values
● Inertialize

● Fluid pose even with twitchy inputs



FIRE & FORGET – MOTION WARPING
● Don’t need to maintain warp 

point data across transitions
● Only 1 active warp at a time
● Simplifies bookkeeping
● Simplifies replication

S. Dickinson. Motion Warping in ‘Gears of War 4’: Doing More with Less. GDC 2017



THANK YOU

DAVID BOLLO
dbollo@microsoft.com


	Slide Number 1
	Animation Transitions
	Animation Transitions
	Animation Transitions
	Animation Transitions
	Multiple Characters
	Multiple Characters
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Transitions as a Post-Process
	Transitions as a Post-Process
	Transitions as a Post-Process
	Goals
	Idea #0: Filter Discontinuous Pose
	Idea #1: Blend From Pose
	Idea#1: Blend From Pose
	Idea #2: Match Velocity
	Idea #2: Match Velocity
	Idea #3: Limit Overshoot
	Idea #3: Limit Overshoot
	Inertialization
	Inertialization
	Inertialization – Initial Values
	Inertialization – Initial Velocity
	Inertialization – Initial Velocity
	Inertialization – Acceleration
	Inertialization – Acceleration
	Inertialization – x(t)
	Overshoot Revisited
	Overshoot Revisited
	Overshoot Revisited
	Idea #4: Clamp Transition Time
	Idea #4: Clamp Transition Time
	Idea #4: Clamp Transition Time
	Inertialization on One Slide
	Vectors and Quaternions
	Inertializing Vectors
	Inertializing Vectors
	Inertializing Vectors
	Inertializing Vectors
	Inertializing Vectors
	Inertializing Vectors
	Inertializing Quaternions
	Inertializing Quaternions
	Inertializing Quaternions
	Inertializing Quaternions
	Inertializing Quaternions
	Inertializing Quaternions
	Blending vs Inertialization
	Blending vs Inertialization
	Blending vs Inertialization
	Blending vs Inertialization
	Blending vs Inertialization
	Inertialization in a Game Engine
	Inertialization in a Game Engine
	Inertialization Node
	Inertialization Node
	Animation System Hooks
	Code Hooks
	Tips and Tricks���
	Smoothing Other Discontinuities
	Locomotion Filtering
	Fire & Forget – Motion Warping
	Thank You��David Bollo�dbollo@microsoft.com

