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ANIMATION TRANSITIONS



ANIMATION TRANSITIONS
● Transition from one animation state to another
● Typically a cross-fade blend between poses
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ANIMATION TRANSITIONS
● Optimizations are often focused on the blend step
● Fast SLERP, optimizing cache and memory usage, etc
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ANIMATION TRANSITIONS
● Biggest cost is evaluating both Source and Target
● Source/Target cost is much greater than blend cost
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MULTIPLE CHARACTERS
● If we’re lucky…

● Only a few active transitions 
at once



MULTIPLE CHARACTERS
● But in the worst case…

● Everybody transitions at the 
same time

● Double the animation cost



CAN WE DO BETTER?
● Intuition: Real humans don’t “blend”
● (but they do have inertia)
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CAN WE DO BETTER?
● IDEA: Eliminate blended transitions!
● Fix the discontinuities as a post-process
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CAN WE DO BETTER?
● IDEA: Eliminate blended transitions!
● Fix the discontinuities as a post-process
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TRANSITIONS AS A POST-PROCESS



TRANSITIONS AS A POST-PROCESS



TRANSITIONS AS A POST-PROCESS



GOALS
● Respect the original animation
● No changes when not transitioning

● Believable and aesthetically pleasing
● Smooth and momentum-preserving

● Stay on-model
● No bad / unnatural poses
● No overshoot



IDEA #0: FILTER DISCONTINUOUS POSE
● Apply a filter to the output pose stream
● Difficult to tune
● Introduces lag
● Deviates from input even when not transitioning



IDEA #1: BLEND FROM POSE
● Capture pose difference between Source and Target
● Ease out the difference over time



IDEA#1: BLEND FROM POSE



IDEA #2: MATCH VELOCITY
● Capture pose difference between Source and Target
● Ease out the difference over time
● Remember Source velocity (via finite differences)
● Match initial velocity
● Quintic polynomial [Flash and Hogan 1985]

T. Flash and N. Hogan. 1985. The Coordination of Arm Movements: An Experimentally 
Confirmed Mathematical Model. Journal of Neuroscience 5, 7 (July 1985), 1688 – 1703



IDEA #2: MATCH VELOCITY



IDEA #3: LIMIT OVERSHOOT
● Capture pose difference between Source and Target
● Ease out the difference over time
● Remember Source velocity (via finite differences)
● Match initial velocity
● Limit overshoot by controlling initial acceleration
● Choose a0 to give us zero jerk at t1



IDEA #3: LIMIT OVERSHOOT



INERTIALIZATION



INERTIALIZATION



INERTIALIZATION – INITIAL VALUES

𝑥𝑥0 = 10000 − 10000

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

-1



INERTIALIZATION – INITIAL VELOCITY

𝑥𝑥0 = 10000 − 10000

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

-1
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10000 − 10000
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-1 -2



INERTIALIZATION – INITIAL VELOCITY
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INERTIALIZATION – ACCELERATION

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

0or

-1



INERTIALIZATION – ACCELERATION

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0
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INERTIALIZATION – X(T)
𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

𝑥𝑥1 = 0
𝑣𝑣1 = 0
𝑎𝑎1 = 0

0or

0or

-1

𝐵𝐵 =
3𝑎𝑎0𝑡𝑡12 + 16𝑣𝑣0𝑡𝑡1 + 30𝑥𝑥0

2𝑡𝑡14

𝐴𝐴 = −
𝑎𝑎0𝑡𝑡12 + 6𝑣𝑣0𝑡𝑡1 + 12𝑥𝑥0

2𝑡𝑡15

𝐶𝐶 = −
3𝑎𝑎0𝑡𝑡12 + 12𝑣𝑣0𝑡𝑡1 + 20𝑥𝑥0

2𝑡𝑡13

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑡𝑡5 + 𝐵𝐵𝑡𝑡4 + 𝐶𝐶𝑡𝑡3 +
𝑎𝑎0
2
𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0



OVERSHOOT REVISITED



OVERSHOOT REVISITED

𝑥𝑥0 = 1.2
𝑣𝑣0 = −12.6

𝑡𝑡1 = 0.5



OVERSHOOT REVISITED

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.5



IDEA #4: CLAMP TRANSITION TIME

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.5



IDEA #4: CLAMP TRANSITION TIME

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.3



IDEA #4: CLAMP TRANSITION TIME

𝑥𝑥0 = 1.2
𝑣𝑣0 = −20.0

𝑡𝑡1 = 0.3

𝑡𝑡1 = min(𝑡𝑡1,−5
𝑥𝑥0
𝑣𝑣0

)



INERTIALIZATION ON ONE SLIDE

𝑡𝑡1 = min(𝑡𝑡1,−5
𝑥𝑥0
𝑣𝑣0

)

𝑥𝑥0 = 10000 − 10000

𝑣𝑣0 =
10000 − 10000

d𝑡𝑡
-1 -2

𝑎𝑎0 =
−8𝑣𝑣0𝑡𝑡1 − 20𝑥𝑥0

𝑡𝑡12

0or

0or

-1

𝐵𝐵 =
3𝑎𝑎0𝑡𝑡12 + 16𝑣𝑣0𝑡𝑡1 + 30𝑥𝑥0

2𝑡𝑡14

𝐴𝐴 = −
𝑎𝑎0𝑡𝑡12 + 6𝑣𝑣0𝑡𝑡1 + 12𝑥𝑥0

2𝑡𝑡15

𝐶𝐶 = −
3𝑎𝑎0𝑡𝑡12 + 12𝑣𝑣0𝑡𝑡1 + 20𝑥𝑥0

2𝑡𝑡13

𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑡𝑡5 + 𝐵𝐵𝑡𝑡4 + 𝐶𝐶𝑡𝑡3 +
𝑎𝑎0
2
𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0



VECTORS AND QUATERNIONS



INERTIALIZING VECTORS
● Obvious choice:
● Inertialize x,y,z independently
● Visual artifacts if vx0,vy0,vz0 are too dissimilar

(because of transition time clamping)
● Instead:
● Decompose vector into direction and magnitude
● Inertialize the magnitude



INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2
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INERTIALIZING VECTORS
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INERTIALIZING VECTORS
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INERTIALIZING VECTORS

𝑥⃗𝑥0 = 10000 − 10000
-1

𝑥⃗𝑥−1 = 10000 − 10000
-2

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

𝑥𝑥0 = 𝑥⃗𝑥0
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∆𝑡𝑡

𝑥⃗𝑥t = 𝑥𝑥t
𝑥⃗𝑥0
𝑥𝑥0

+
t



INERTIALIZING QUATERNIONS
● Similar construction to vectors:
● Decompose quaternion into axis and angle
● Inertialize the angle



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

∗ ∗
-1 -1



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

𝑥⃗𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

∗ ∗
-1 -1

𝑥𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)



INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1

𝑞𝑞−1 = 10000 − 10000
-2

𝑥⃗𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

∗ ∗
-1 -1

𝑥𝑥0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞0)

Twist of 𝑞𝑞−1 around 𝑥⃗𝑥0
K. Shoemake. 1994.

Fiber Bundle Twist Reduction
Graphics Gems IV, 230 – 236

𝑥𝑥−1 = 𝑥⃗𝑥−1 �
𝑥⃗𝑥0
𝑥𝑥0

2 tan−1
𝑞𝑞xyz � 𝑥⃗𝑥0
𝑞𝑞w



INERTIALIZING QUATERNIONS
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INERTIALIZING QUATERNIONS

𝑞𝑞0 = 10000 − 10000
-1
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Fiber Bundle Twist Reduction
Graphics Gems IV, 230 – 236
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: 𝑥𝑥t

∗
t



BLENDING VS INERTIALIZATION



BLENDING VS INERTIALIZATION
Blending

● Evaluate both Source & 
Target during transition

● Variable anim frame cost

Inertialization

● Only evaluate Target 
during transition

● Fixed anim frame cost

Source

Target

Blend

Source Target



BLENDING VS INERTIALIZATION
Blending

● Manage multiple sets of 
state during transitions

● Adds complexity

Inertialization

● Only maintain one set of 
state during transitions

● Fire and forget

Source

Target

Blend

Source Target



BLENDING VS INERTIALIZATION
Blending Inertialization



BLENDING VS INERTIALIZATION
Blending Inertialization



INERTIALIZATION IN A GAME ENGINE



INERTIALIZATION IN A GAME ENGINE
● Inertialization Node / Filter
● Animation System Hooks
● Code Hooks



INERTIALIZATION NODE
● Evaluated after the main animation graph
● Input is discontinuous pose stream
● Output is inertialized pose stream



INERTIALIZATION NODE
● When a new inertialization is requested:
● Compute and store x0, v0 for all joints
● Store t1 and set t = 0

● Every frame:
● Update t with delta time
● Evaluate and apply x(t) for all joints
● Store the OUTPUT pose in the pose history buffer



ANIMATION SYSTEM HOOKS
● Add “inertialization” as a new blend curve type
● When a blend is requested with “inertialization” type:
● Inertialize with the supplied blend time
● Zero the blend time to bypass regular blending



CODE HOOKS
● Expose “Request Inertialization” to code
● Eliminate other types of discontinuities
● And other tricks…



TIPS AND TRICKS



SMOOTHING OTHER DISCONTINUITIES
● Gears of War 3:
● Snap character rotation when switching to sprint

● Gears of War 4:
● Snap character rotation when switching to sprint
● Inertialize away the discontinuity



LOCOMOTION FILTERING
● Gears controls are very responsive (twitchy)
● Filter inputs to locomotion blend spaces
● If filtered values are too far from actual values…
● Snap to actual values
● Inertialize

● Fluid pose even with twitchy inputs



FIRE & FORGET – MOTION WARPING
● Don’t need to maintain warp 

point data across transitions
● Only 1 active warp at a time
● Simplifies bookkeeping
● Simplifies replication

S. Dickinson. Motion Warping in ‘Gears of War 4’: Doing More with Less. GDC 2017



THANK YOU

DAVID BOLLO
dbollo@microsoft.com
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