GOC

Circular Separable
Convolution

Depth of Field
“Circular Dof”

»

Kleber Garcia
Rendering Engineer — Frostbite Engine
Electronic Arts Inc.

GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18




Agepda

- Background

. Results

. Algorithm

- Performance analysis
. Artifacts/Improvments
. Sources / Credits

- Q/A

FROSTBITE



GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 -'

v R W

-—Depth of Field




GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 -'

N




GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 -'

Field




GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18

Background

Bokeh —is the aesthetic quality of
the blur produced in the out-of-
focus parts of an image produced

by a lens.




GOC ..o concenmnce: | s
Background

e Circle of Confusion (COC) - optical spot
caused by a cone of light rays from a lens
not coming to a perfect focus when imaging
a point source.

e Can be thought of the ‘radius of the blur’ at
a given pixel.

e &









-

PGATOUR
..

e

/‘ﬁ e -
> = . S— c —
Y ~
—=. —
- N 3
¢ ) . — —
- y ~ — 5
- " - ~
- -






\ 4
k\(f 4

/4
M
%

/
’
4

-~

FROSTBITE




1]

-

Sprite DOF >



Circular DOF 2



-




GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 g

Algorithm

Separable gather (Circular Dof filter)

e http://yehar.com/blog/?p=1495
By Olli Niemitalo

« Separable circular filter.

* Possible Iin the frequency domain
(Imaginary space)!

 Decompose frame buffer into a Fourier
Transform

Possible to mix the signals and get a
circular convolution

- Oy e



http://yehar.com/blog/?p=1495

Algorithm

e TO understand the separable property
of Circular Dof, lets first take a look at
how separable Gather works.

e &



GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 E'

Algorithm

Brute force gather vs Separable Gather

w1 W2 w3
\ ‘ / w1 tgmp
w4 targetg W5 Pixe
) " I " S — w1 t w2
pixe — e~ W) e
/ I \ pt'xel
t
wo Wi w8 V2 pei’)r:;ﬁ)
Brute Force Gather - O(n?) Separable Gather - O(n)

e &



GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 ’ /

Algorithm

Separable Bokeh
e Our approach has same time complexity as separable Gather-Gaussian.




GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 g
Al ith

Separable gather (Gaussian filter)




GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 g
Al ith

Separable gather (Gaussian filter)




GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 g
Al ith

Separable gather (Gaussian filter)




/ N
i / /
/ /
@ ’ /
/

GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Algorithm

Separable gather (Gaussian filter)
2
e F(x) = e™%

Clear Image Vertical Blur Horizontal Blur

‘ T
% 00
: UBM



GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 n'
Al ith

o A filter F(x) can be resolved to a set of weights.

e Our approach resolves a complex filter into a complex number
e Complex numbers have 2 components, real and imaginary

e Rememberi *i=-1

e Let P be acomplex number, P = B. + P;i

e The sum of two complex numbers P and Q would be
P+Q =(Pr+Qr)+(Pi+Qi)i
e The product of two complex numbers would be
P*Q — (Pr*Qr)_(Pi*Qi)'l'[(Pr*Qi)‘l'(Qr*Pi)]i

e &



GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 “'
Al ith

o Lets look now at circular DoF In action...




Algorithm

Separable gather (Circular Dof filter)

One Component Filter



GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDC18 g
Al Ith

Separable gather (Circular Dof filter)




; MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18
Algorithm
Separable gather (Circular Dof filter)

F(x) = e~ ax" (cos(bx?) + i sin(bx*))

- Oy e



RENCE’ MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18
Algorithm
Separable gather (Circular Dof filter)




Algorlthm

Separable gather (Circular Dof filter)

Color(x) = A * Freqy (x) + B * Fipaginary (%)




ROt B (%) = e (cos(bx?) + i sin(bx?))

"

Real component %

Vertical Blur

Final Image

_ Horizontal blur & combine
Imaginary component



y

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 u'

Algorithm

Separable gather (Circular Dof filter)

e That was just 1 component. We can add
filters (multiple components) and
approximate a circle better.

e &



GDC GAME DEVELOPERS CONFERENCE® | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18 g

Two Component Filter
e We compute the filter the same way as before, but now with 2 components

Component a b A B
cO -0.880228 922605909 0411258  -0.545794
c1 -1 8960218 1.2598215 0.913282 45961110

! g



real —

L
real —
a real \

imaginary imaginary Component O

real

\ real

imaginary

real

imaginary  Component 1



Algorithm

Circular DoF

Low quality (1 component on left) vs High quality (2 components on the
right). We use the low quality for the near blur plane, and the high quality
for the far plane.

Component a b A B
Component a b A B co _0BB6528 5268909 0411259 -0548794
co -0.862325 | 1.624835 | 0.767583 | 1.862321 c 1960518 1558213 0513282 4561110

F(x) = e~%"(cos(bx?) + i sin(bx?))
Color(x) = A * Freq (x) + B * Fimaginary (x)






and CoC




Start with clear image and
circle of confusion (near and far)

The output would be a blurred
10 bit buffer.




Split main image into near and far by
premultlplylng C|rcl_e of confusmn







Tile the near COC (MAX within a certain tile size to get edge bleeding)












.
I
!
I
7
/
14
4
I
'
r
!
!
{
N\
N\
hY
.

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18

Artifacts

« Occluded circles get split in *half’ due to separable nature.
« Very subtle artifact




GDC GAME DEVELOPERS CONFERENCE" | MARC 8 | EXPO: MARC @ {

Artlfa cts

° GhOSting

« Can be reduced by biasing blending
(jumping to qur image as fast as pOSS|bIe)




Performa nce
e GPU (sprite dof 1080p, half res)

e 9.98ms on XB1
e /.65ms on PS4
e GPU (1/4 res of 1080p, 2 components for far):
e 1./ms on XBl
e 1.3ms on PS4
e GPU (1/2 res of 1080p, 1 component):
e 3.4ms on XBl
2./ms on PS4

e &



y

GOC .. ocomconrmmoce 1 msenran o 1 soomsonnasion socn (B
Performance (addltlonal mfo)

o Limiting occupancy on xbl and ps4 for downsampling pass of
coc and color (full res to quarter res)

. Downsamﬁllng pass is massively vmem bound, ends up

trashing the cache.
e Solution? Limit the occupancy!, can make it run as fast!
e XB1:
o #define _ XBOX_LIMIT_OCCUPANCY_WITH_HARD_LIMIT 1
o PS4:
e #pragma argument(minvgprcount=84)
e #pragma argument(targetoccupancy=23)
e #pragma argument(scheduler=Ilatency)
o special thanks to Tomasz Stachowiak [ @h3r2tic ]

e &


https://www.facebook.com/h3r2tic?hc_ref=ARRGeoV0KDwhESdlOLzQn0LKuQoli3Dm_6YdGIphBBIyzjSdsURYGXiDFNWH8yRQ_Xk
https://twitter.com/h3r2tic

y

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 L"

Additional Perf Opportunities

e EXplore armortization — essentially less samples are required for
smaller CoC radii. We can precompute a set of filter weights, for
different radius ranges, and pick them dynamically.

e Would not improve performance on a fully blurred image.
e Would improve performance for areas fully clear of the image.

e Combine near and far

o Essentially have only one shader for horizontal and vertical
passes

e Use MRTs to output different values of near and far

e Might have to explore manual occupancy hints to preserve vmem
cache coherency

e &



y

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 E'

Additional Visual Imprcvements
e Trasparency: instead of using transparent depth to shift COC,

use multiple render planes / buckets and composite these.

e More on Ghosting

e improved performance gains and do the pass in full
resolution (see previous slide!)

o« dynamically compute pixel to ratio bias, and use scene
information such as pixel luminance to automatically ‘jump’
to the next blur plane.

e &



Shader Toy Example

https://www.shadertoy.com/view/Xd2BWc




PreFiltering

Used a filter generator algorithm to
precompute the filter

Madden uses a 68 pixels (in Va res r = 8)
diameter filter!

It uses 2 component for far blur and 1
component for near blur.

https://github.com/kecho/CircularDofFilterG
enerator

o A lite python version of the filter generator
can be found here



https://github.com/kecho/CircularDofFilterGenerator

Sou rces

e CSC algorithm blog post. (Olli Niemitalo,
2010) http://yehar.com/blog/?p=1495

o Five Rendering ideas from BF3 and NFS: e
run, (Electronic Arts, Siggraph 2011)
http://www.slideshare.net/DICEStudio/five
-rendering-ideas-from-battlefield-3-need-
for-speed-the-run

e &



http://yehar.com/blog/?p=1495
http://www.slideshare.net/DICEStudio/five-rendering-ideas-from-battlefield-3-need-for-speed-the-run

GDC GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23,2018 #GDCI18 “'
Credit

Kleber Garcia - Render Engineer, Frostbite

Arthur Homs — Principal Engineer, Microsoft






Appendix — Mathematical
derivations.

e &



F(X) filter derivation

o A separable filter F(x), Is separable
when:

o F(V(x2+y?))=F(x)*F(y)

F( x) = eX* Gaussian function has this
property! Therefore that’'s why is separable




F(X) filter derivation

e An imaginary number has a phas[%and
envelope:

e Imaginary number can be written as x + iy
e Or: r(cosep + isiny)
e Or: re®




F(X) filter derivation

Let F(x) be a complex function.

Let |F(x)| be the magnitude (r in the previous
slide)

Let arg(F(x)) be the envelope (angle @)

F(X) can be written as:
F(x) = | F(x) | * (cos (arg(F(x)) + i*(sin(arg(F(x ))))



F(X) filter derivation

e« F(x )= | F(x) | * (cos (arg(F(x)) + i*(sin(arg(F(x ))))

e Assume F(x) is separable.
e Hence |F(X)| must be a Gaussian function
o|F(x )| = ea™"2

e arg( F(V(x2 +vy?)))=arg( F(x)) + arg( F(y ))
otherefore arg(F(x ) ) = bx?2



F(X) filter derivation

Replacing the previous terms, we get
e F(Xx) =eax"2x* (cos(b*x2) + i * sin (b*x2))

Arbitrary circles can be achieved a weighted sum of imaginary and
real elements.

Final filter kernel function becomes:
* I:ﬁnal( X) =A% I:real(x ) +B* I:imaginary(x )

A final sum of these components will give us a convoluted color.



F(X) filter derivation

Component a b A B
Component a b A B

Co -0.586528 9268909 0411259 -0.548794

co -0.882320 | 1.824832 | 0.767983 | 1.862321 C1 -1 960518  1.558213 0513282 4561110



Bracketing the filter

e How can we maximize bit precision? Bracketing
and squeezing the filter to produce numbers in
the [0,1] domain.



Bracketing the filter

Let 0 < X < N, where N is the max pixel width.

Assume we have an arbitrary G kernel with the following properties.
'Zg:l G(x) — V
o0 = Min(G(x))
oS = 25:1{G(x) — Oy}

We can then transform the kernel G into the bracketed kernel G’, wich can
be defined as:

OG’(X) — G(x; ¢

We can then store coefficients O and S for G'(x)




Bracketing the filter

Let I be a 1 dimensional (for simplicity) image, 16 bit rgba
buffer for our final storage.

Let I' be a temp storafc_ge, which can only store numbers from
O to 1 (10 bit rgba buffer)

Let J be our initial image.

Lets now try to convolve J using G'(x) and store it in I'[X]

eSince we know O, and S we can store

J'[w] = XN_. JIw]G'(x) <- Lets instead store the bracketed version, and separately keep track of the
kernel values O and S.

I'[i] is not quite what we planned though! We want to take
I'[i] and convert it to the equivalent of I[w] = X¥_, I[w]G (x)



Bracketing the filter

Now, we know that I’ contains our bracketed filter values. When
we sample from I, we can convert to the actual non bracketed by

applying some inverse operations.
We know I[w] =X, J|w]G(x)

Here is how we convert I’ into I:
«We know the definition of I'. We can expand I’ algebraically into

I'w] = BN Jw] « [T

eMeans we can do some algebra and define I as

Ifw] = N, (JIw] * [F522] + s) + ZX.wlo

oI[w] = YR_1(I'[w] *S) + X3=1][w] * O

eMeans that if we store O, S and Sum of all J[w]s (in a separate target) we
can compress the render targets into 10 bits with unbounded information.




