
Rebuilding Your Engine During

Development: Lessons from

Jan Kratochvil
Technical Director

Hangar 13 games

Mafia III overview

Open world, 3rd person, action adventure

Story driven, yet not linear

Set in 1968 New Bordeaux

Released October 2016

PS4, Xbox One, Windows, Mac OS

Why rebuilding the engine?

More data

Bigger team

Multiple studio locations

Pain points

World editor

Difficult to use pipelines

Very bad iteration times

No asset management

Code bound entity system

Goals

More accessible tools

Able to deal with large amounts of data

Data driven

Major changes

New world editor

New object system

Build system

Local iteration

Visual scripting

Middleware integration

Physics

Animation

Navigation

UI

Audio

World editor
Object system
Deployment

Old World Editor

Bread and butter for most content creators

Obsolete technology used (WinAPI)

Difficult to extend

We had lot of other C# based tools

New world editor goals

Increase productivity

Simple to extend

Production ready ASAP

New world editor decisions

New tool in C#/WPF w/ DevExpress

Integrate old editor plugins in new editor

Use C++/CLI for engine communication

Get users involved early on

C# and WPF

It is indeed faster to write tools

Difficult to write responsive tools

It is difficult to hire engineers with WPF experience

DevExpress has its issues

DirectX9 support only

Integrate old editor plugins

WinAPI plugins fluently integrated in .NET app

There is a price
Performance of whole editor

Old plugins don’t fit nicely

Use C++/CLI for engine communication

It looks ugly and doesn’t support modern C++

Linking was very expensive

Debugging is slow and not reliable

Get users involved early on

Shared ownership

Iterative development based on early feedback

Trap of too many iterations

Dealing with layout/colors too soon

Lesson learned

C# and DevExpress was a good choice

WPF not so much

C++/CLI was a terrible choice

Involving users early on is great

Keeping WinAPI plugins was necessary

World editor
Object system

Deployment

New object system

Asset and file management

Inheritance and grouping

Empowering content creators

Asset and file management goals

Easy tracking of dependencies

Support binary & text format with minimal effort

Identify objects by ID

Backward and forward compatible

Asset and file management decisions

Use C++ Reflection for serialization

Every object has a unique identifier

Use C++ Reflection for serialization

Very simple for engineers to expose data

Macro based internal framework

BEGIN_REFLECTION_DEFINITION(C_SkeletonComponent)
BEGIN_REFLECTION_ATTRIBUTES();

ADD_REFLECTION_ATTRIBUTE(m_ImmutableData);
ADD_REFLECTION_ATTRIBUTE(m_VirtualBoneImmutableData);
ADD_REFLECTION_ATTRIBUTE(m_WorldAABB);
ADD_REFLECTION_ATTRIBUTE(m_LocalAABB);
ADD_REFLECTION_ATTRIBUTE(m_SkeletonActivation);

END_REFLECTION_ATTRIBUTES();
END_REFLECTION_DEFINITION();
DEFINE_RTTI(C_SkeletonComponent, 0x0fa73185);

Use C++ Reflection for serialization

Very simple for engineers to expose data

Reasonable backward and forward compatibility

No need for versioning system

Strong code-data dependency

Every object has a unique ID

Free movement of assets around

Service reading TOC and tracking IDs

Easy to query for dependencies

There were a lot of objects
We had to disable them for some classes

Unique ID system issues

Service on the background is quite annoying

You can’t copy files anymore

Export from external tools is tricky

Inheritance system

Increase reusability of assets

Easy to use
By engineers

By content creators

Ability to override anything

Inheritance system

Dealt within serialization code

Based on reflection and unique IDs

No restrictions of what can be modified

Inheritance system

It worked out great

But…

Comparing parent with child on save is fragile

Inheritance system

Parent

Child

Stored data

Add after 2nd

Inheritance system

It worked out great

But…

Comparing parent with child on save is fragile

Resave dependents

Inheritance system

Resource A Resource B Resource C

Expectation

Last save:Vase Red table Yellow vase

Vase ID:

0xff9e6565a0159a6e

0x8466158f84f60f15

Resave dependents

We didn’t figure out how to fix in production

Introduced a “feature” to resave dependents

Very difficult to understand when to use it

Empowering content creators

Ability to compose objects

Grouping of objects together

Object level scripting using visual language

Flexibility advantages

Content creators got more powerful

Very fast prototyping of new features

Some prototypes can turn into features as is

Flexibility disadvantages

Loss of control

Expectation Reality

13 objects 1006 objects

Flexibility disadvantages

Loss of control

Generic approach is not always great

Object level scripting is scary

Lesson learned

Having unique ID per object is great

Generic Inheritance system based on comparing

parent with child is tricky

Giving power to user exceeded our expectation

Everything that the tech allows will be used

World editor
Object system
Deployment

Context for release

Production started before we were done

We spent a year in isolation

Painful merges from main branch

Long data conversions

Changing plans

World Editor and Object system together

Changed our mind on backward compatibility

QA testing

QA involved
Very early for tools

Just 3 months before deployment for game

Game testing was simple

World editor testing was not very effective

Power user testing

Power user group assembled!

We got better feedback

Quality of feedback declined rapidly

Lost focus on throw away work

Importance of having real goals

Training people

Power users helped again

Presentations of new tools and concepts

Workstation with new World Editor

Last days before deployment

Merging to new engine branch every day

Locking tricky content on main branch

Moving some gameplay engineers ahead of time

D-Day

Friday everyone submits and go home early

Dealt with the move over weekend

Monday everyone goes to office and starts working

on new branch

Production helped with setting up everyone

Post deployment

Issues not found by Power users or QA

Found few rare workflows engineers didn’t know

about

Early feedback not very positive

Deployment lessons

Deployment breaks illusions

Testing on artificial content is not effective

Missing documentation/explanations

New features were misused or misunderstood
Inheriting object instead of copying

Still copying files outside of our tools

First year after deployment

Latent issues like resave dependents

Lot of bullet proofing

Explosion of new components

Conclusion

Upgraded to modern engine

Faster learning curve for new users

Consistent control for editor

Deployment during production is not fun

Bright future

We were mature on release

DLC production proved the technology

Thanks! Questions?

Jan Kratochvil
jan.kratochvil@2kgames.com
https://hangar13games.com

mailto:jan.kratochvil@2kgames.com
https://hangar13games.com/

