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Shadow of War



Shadow of War

• 3rd person action adventure game
• Retail on October 10th 2017
• Platforms: Xbox One, Xbox One S, Xbox One X, 

Playstation 4, Playstation 4 Pro, PC Win32, PC UWP.
• Target console frame rate: 30 fps (33.3ms)
• Target PC frame rate: 60 fps (16.6ms)



Shadow of War

• Nemesis System
• Core design pillar
• Unique AI

• Personalities
• Traits
• Visuals



Shadow of War

1. Performance Optimizations
2. Memory Optimizations



Performance Optimizations



The Cost of War

• Shadow of Mordor was a 
challenge to move from 8 active 
AI to 60 since F.E.A.R. 2

• Shadow of War’s design pushed 
this challenge even further by 
moving to 200 active AI

• This becomes both a problem 
with executing AI logic and 
rendering 200 unique AI 
necessitated by the Nemesis 
System.
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The Cost of War

Shadow of Mordor Shadow of War

AI Count 60 200

Mesh per AI (LOD0) 4 48

Mesh Density 1x 5x

Bones per Mesh 32 64

48 pieces X 64 bones = 768 bones per character



The Cost of War

Shadow of Mordor Shadow of War

FX ~2ms on CPU ~20ms on CPU

GPU Particle Emitters 10 - 20 5000+

NavMesh 371K triangles 1.1M triangles
76 pathing sets in 8 clearance
caches
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The Cost of War

• At its worse, the game ran at 90ms per frame on 
the consoles.



Threading



• In order to get 200 AI simulating at the same time we had to 
thread many game systems from Shadow of Mordor.

• This was a major undertaking that consumed a large portion of 
the engineering team and took most of the project.

Threading



Threading

Thread Description

FX Background thread to process FX on the CPU

AI AI updating to support 200 AI

Path Finding Background path finding thread

Path Region Background path region updating thread

Fire Simulation Fire simulation thread

Player and AI Motion Player and AI motion system



• Moved away from using kernel primitives in 
favor of lightweight atomic spin locks for 
atomic data access protection.

• When a context switch is desired a kernel 
primitive is still used.

• The real cost of a context switch is cache 
eviction.

Threading – Synchronization Primitives



• Introduced a lightweight multiple readers single 
writer primitive

• Reading the state of the physics simulation from 
multiple threads is an example.

• Microsoft platforms have a Slim Reader/Writer 
(SRW) Locks primitive. 

• Sony has an equivalent primitive.

Threading – Synchronization Primitives



• Can be implemented using two atomic spin lock instances 
and an atomic counter to track the number of readers. 
• First atomic spin lock is used as a reader lock
• Second atomic spin lock is used as a writer lock

Threading – Synchronization Primitives



• Separated workloads between the two CPU clusters 
on the consoles to take advantage of the shared 
L2$.
• The first CPU cluster executes game play logic.
• The second CPU cluster executes rendering logic.

Threading – CPU Clusters



• Due to the increased complexity of Shadow of War 
this resulted in a 10% performance gain. 

• Requires that the clusters are not touching the 
same cache lines at the same time.
• Black Magic.

Threading – CPU Clusters



• Keep jobs large
• Keep as much code single threaded as possible
• Lowers the level of entry for junior engineers
• Lowers the amount of bugs introduced by concurrency
• Requires less overall synchronization
• Typically results in better use of the CPU cache

Threading – The Monolith Approach 



• Move entire systems over to background threads
• Set hard affinities for large systems

Threading – The Monolith Approach 



• We fill the CPU gaps with lower priority threads. 
• Similar to the concept of Async Compute but for a CPU 

core.
• File I/O, streaming, and asynchronous ray casts are 

examples.

Threading – The Monolith Approach 



Threading – The Monolith Approach 
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The Monolithic Approach

Threading – The Monolith Approach 



• Operations are pipelined through the use of circular 
command buffers.

• The pipeline pushes operations in a single direction.
• Each one of these command buffers are then 

executed on a dedicated thread that runs on a 
dedicated core.

• It allows each pipelined stage to get the full 33.3ms 
per frame

Threading – Pipelining



Threading – Pipelining

       



• When pipelining threads, we guarantee that the 
next stage in the pipeline is no more than 1 frame
behind (33.3ms).

• Ideally all pipelined stages are running in parallel, 
with a few milliseconds offset between each.

• This will be true if the entire pipeline is bound by 
the first stage in the pipeline.

Threading – Dynamic Frame Pacing



• If the entire system is bound by the last stage, we 
end up displaying frames that were simulated 
several frames ago.

• This is caused by the telescoping nature of 
pipelining

• We are always bound by the last stage when we v-
sync. 

Threading – Dynamic Frame Pacing



Threading – Dynamic Frame Pacing

SimulationThread

RenderThread

DriverThread

GPU

Display Queue

Display

33.3ms + 33.3ms + 33.3ms + 33.3ms + 33.3ms + 33.3ms = 200ms



• Input latency becomes a problem since input is 
evaluated on the simulation thread, up to 200ms 
before the frame displayed on the screen. 

Threading – Dynamic Frame Pacing



• Our solution is a dynamic frame pacing system.
• This system monitors the display queue on the GPU. If the 

queue is full then we are bound by the GPU.
• When we are GPU bound we artificially stall the first 

stage, the SimulationThread, so that it takes slightly more
time than it’s allotted. 
i.e., Sleep(33.3 – TimeOfSimulationThread + 1)

• This causes the telescope to contract.

Threading – Dynamic Frame Pacing



Threading – Dynamic Frame Pacing

                  



• The SimulationThread is now down to 50ms in the worst 
known case

Threading
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Renderer



Renderer

Shadow of Mordor Shadow of War

Xbox One API D3D11/D3D11.X Mix D3D11.X with Fast Semantics

PS4 API GNM LCUE

PC API (minimum) D3D11.0 D3D11.1

PC Hardware (minimum) 11_0 11_0

Console Cores 2 1.5



• Too many copies were made between the game to 
engine abstraction layer.

• Each constant was set individually then assembled 
into a constant buffer.

• Constant buffers were regenerated for every draw 
call.

Renderer – Constant Buffers



• We broke up our constant buffers based on update 
frequency.

• Accessing constants in the renderer returns a 
pointer to the actual constant buffer.

• Exposed constant buffers directly to game through 
accessors. 

Renderer – Constant Buffers



• Tracked through dirty state and frame code. 
• Once sent to the GPU, a new copy is made and the 

dirty state cleared.
• Memory is not reused until the frame code is cleared 

by the GPU.

Renderer – Constant Buffers



• Binding named constant buffers just sets the 
pointer.

• Material Constant Buffers are baked into assets at 
cook time.

Renderer – Constant Buffers



Renderer – Constant Buffers
Shadow of Mordor Shadow of War
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Renderer – Constant Buffers

48 pieces X 64 bones

= 307,200 bone transforms per frame

X 2 previous frame X 200 AI

X 4 render stages

= 1,228,800 bone transforms per frame



• Each constant buffer constant was hand sorted by 
acquiring heuristics on how often a constant is 
used.

• Rarely used constants and constants that were 
typically set to 0 were sorted to the bottom of the 
constant buffer.

Renderer – Constant Buffers



• Allocated constant buffers only big enough to hold 
used constants and constants that were not 0.
• This drastically lowered the amount of memory 

accessed.
• Reading past the end of a buffer on the GPU just 

returns 0.
• Causes Graphics API error spam but it can be 

suppressed.

Renderer – Constant Buffers



• Cached constant buffers with render nodes to reuse 
at different stages if they haven’t changed.
• Bones for G-Buffer stage and CSM stages

Renderer – Constant Buffers



• Switched to faster 1st party Graphics APIs
• D3D11.X with Fast Semantics / LCUE

• Removed all frame-to-frame reference counters.
• Lifetimes managed using frame codes only.
• Cached entire Graphics API state. 
• Removed redundant state changes to 1st party 

Graphics APIs.

Renderer – General Optimizations



• Reduced CPU and GPU cache flushing by allocating 
dynamic GPU memory on cache line boundaries 
and padding to the end of cache lines then tracking 
this memory with a frame code for CPU access.

Renderer – General Optimizations



• Dynamic CPU load scaling 
• Pushing out LODs based on CPU load to lower 

mesh counts
• Pausing high mip streaming to lower CPU usage, 

memory pressure and the cost of physical page 
mapping.

Renderer – General Optimizations



Renderer
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• The RenderThread is now down to 45ms in the worst 
known case



Performance – Memory



• A huge performance win for Shadow of War was 
switching all allocations to large 2MiB pages.
• A 20% performance gain over 64KiB pages.
• Large pages reduce Translation Lookaside Buffers 

(TLBs) misses which are very costly.
• We preallocate all large pages at process creation.
• Implemented this for PC too, although PC is almost 

always GPU bound.

Performance – Memory



Performance – Memory

CPU Memory (2 MiB Pages)
2,048

GPU Non-coherent  (2 MiB 
Pages)
1,536

GPU Coherent (2 MiB Pages)
256

Texture GPU Non-coherent 
(64 KiB Pages)

1,024



• The SimulationThread is now down to 40ms and the 
RenderThread is now down to 36ms in the worst known 
case

Performance – Memory
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Performance – The Final Blow



• Development Builds
• DLLs are used for improved engineering iteration
• Incremental linking is enabled on all projects
• Debug:FastLink is available and used by some 

engineers
• The executable is a tiny stub that loads and runs these 

DLLs

Performance – The Final Blow



• Retail Builds
• DLLs now compile as LIBs
• Incremental linking is disabled
• The executable is still a tiny stub that now links in the 

LIBs.
• Improves runtime performance by about 10%

Performance – The Final Blow



• Retail Builds
• LTCG is enabled on all platforms and all projects, including all 

middleware.
• LTCG on Microsoft platforms gave us another 10%

improvement and about a 5% improvement on the PS4.
• PGO is enabled on all platforms. 
• PGO improved performance by about 5% on all platforms.
• Make sure to disable COMDAT folding on Microsoft platforms.

• It will counter the gains from PGO. 

Performance – The Final Blow
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• The SimulationThread is now down to 33ms and the 
RenderThread is now down to 30ms in the worst known 
case

Performance – The Final Blow



Memory Optimizations



Memory – GPU Virtual Memory

• Modern GPUs use virtual memory just like CPUs.
• Physical memory does not have to be contiguous.
• Physical memory can be mapped and unmapped at 

page granularity.
• A single physical memory page can be mapped to 

multiple virtual memory addresses.



Memory – GPU Virtual Memory
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Memory – 64KiB Pages

• The advantage of using 64KiB pages is that they are 
smaller than larger pages and allow for greater 
sharing and reuse.

• The disadvantage to using 64KiB pages is that they 
are slower to access due to increased TLB misses.



Memory – Mipmap Streaming



• On Shadow of Mordor we streamed mipmaps in 
but never unloaded them. 
• This was mostly done to lower load times.
• If a texture was used, its high mip was streamed in

• On Shadow of War we needed to stream high 
mipmaps in and out to save on memory. 
• We used a fixed mipmap memory pool.
• The high mip is 66% of the memory for a Texture2D.

Memory – Mipmap Streaming



• At cook time we analyze every mesh and determine the 
largest triangle with the largest texel density. We save it 
off.

• At runtime, when rendering a mesh, we project this 
triangle into screen space using the CPU and calculate 
the approximate mipmap value.

Memory – Mipmap Streaming



Memory – Mipmap Streaming



• The CPU system is throttled by a number of 
meshes/materials that can be analyzed per frame 
(64), by a frame code per mesh, and by a dampener 
to avoid thrashing.
• 1920 meshes tested every second

• The CPU cost of mipmap analysis is fixed at 0.1ms
per frame.

Memory – Mipmap Streaming



• The high mips use a pool of 64KiB pages. This pool 
of pages are preallocated at process creation.

• High mips are loaded until the pool is depleted.
• All textures that support high mip streaming are 

created without physical memory backing for their 
high mip.

Memory – Mipmap Streaming



Base Memory

High Mip Memory Pool

Memory – Mipmap Streaming



• Conclusion
• Using a pool of memory for our high mips saved about 

1.0GiB of memory.

Memory – Mipmap Streaming



Memory – Texture2DArray



Memory – Texture2DArray

• Shadow of War uses a fair amount of 
Texture2DArrays.
• Terrain
• Character models
• Most structures
• FX flipbooks



Memory – Texture2DArray

• Benefits
• Slices within Texture2DArrays are all sampled at the 

same level which is great for blending.
• It is typically easier to avoid branches in the shader to 

sample a Texture2DArray than it is when sampling 
several Texture2Ds.



• Issues
• Padding - Texture2DArrays on AMD hardware are 

stored per mip, per slice. This ends up padding slice 
counts to a power of 2. If a texture array contains 3 
slices, the memory layout contains 4 slices.

Memory – Texture2DArray



• Issues
• Duplication - If two Texture2DArrays use the same slice, 

that slice ends up getting duplicated in memory.
• For example, these arrays are typically used for blending. In 

a snowy region everything will get blended with snow. The 
snow texture slice will be duplicated in many texture arrays.

Memory – Texture2DArray



• In order to get around padding we manually bind
64KiB pages to the portions of the texture that are 
actually read by the GPU. 

• We do not back layout padding with physical 
memory.

• Packed Mips are mips that are smaller than a 64KiB 
page and share a 64KiB page. They are always 
backed by physical memory pages.

Memory – Texture2DArray
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Memory – Texture2DArray



• We solved duplication by sharing 64KiB physical 
memory pages between the slices.

• Texture2DArrays only contain references to Texture2D 
slices.

• At runtime the physical pages of the slices are mapped 
onto the Texture2DArrays.

• Each slice is reference counted. Physical memory for the 
slice is not freed until all references are gone.

Memory – Texture2DArray



• Packed Mips are smaller than a single 64KiB page, 
and remain duplicated.

• This solution also allows us to use the slice as a 
regular Texture2D and share it with a 
Texture2DArray in memory.

• Cook times were also reduced as we only need to 
cook one slice at a time.

Memory – Texture2DArray
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Memory – Texture2DArray



• Conclusion
• Avoiding duplication saved us around 300MiB on 

average.
• Scene dependent.

• Avoiding padding allowed artists to create non-power 
of 2 arrays.

Memory – Texture2DArray



Join us!

We currently have multiple open 
positions across all of our departments 
at all levels.

https://www.lith.com/careers



MIDDLE-EARTH: SHADOW OF WAR: ASSET PIPELINE GROWING PAINS
Doug Heimer
Friday 10:00am - Room 2010, West Hall

HELPING PLAYERS HATE (OR LOVE) THEIR NEMESIS
Chris Hoge
Thursday 4:00pm - Room 2014, West Hall

SCORING 'MIDDLE-EARTH: SHADOW OF WAR': A POSTMORTEM
Nathan Grigg, Garry Schyman
Wednesday 3:30pm - Room 3006, West Hall

ANIMATION BOOTCAMP: 'MIDDLE-EARTH: SHADOW OF WAR': CREATING 
MULTI-CHARACTER COMBAT ANIMATIONS
John Piel, Camille Chu
Monday 11:20am - Room 2010, West Hall



Thank You!

Piotr Mintus (piotr@lith.com)
Technical Director, Monolith Productions

Questions?


