
Performance and Memory Post Mortem for
Middle-earth: Shadow of War

Piotr Mintus
Technical Director, Monolith Productions

Shadow of War

Shadow of War

• 3rd person action adventure game
• Retail on October 10th 2017
• Platforms: Xbox One, Xbox One S, Xbox One X,

Playstation 4, Playstation 4 Pro, PC Win32, PC UWP.
• Target console frame rate: 30 fps (33.3ms)
• Target PC frame rate: 60 fps (16.6ms)

Shadow of War

• Nemesis System
• Core design pillar
• Unique AI

• Personalities
• Traits
• Visuals

Shadow of War

1. Performance Optimizations
2. Memory Optimizations

Performance Optimizations

The Cost of War

• Shadow of Mordor was a
challenge to move from 8 active
AI to 60 since F.E.A.R. 2

• Shadow of War’s design pushed
this challenge even further by
moving to 200 active AI

• This becomes both a problem
with executing AI logic and
rendering 200 unique AI
necessitated by the Nemesis
System.

8
60

200

0

50

100

150

200

250

F.E.A.R. 2 Shadow of Mordor Shadow of War

AI Count

The Cost of War

Shadow of Mordor Shadow of War

AI Count 60 200

Mesh per AI (LOD0) 4 48

Mesh Density 1x 5x

Bones per Mesh 32 64

48 pieces X 64 bones = 768 bones per character

The Cost of War

Shadow of Mordor Shadow of War

FX ~2ms on CPU ~20ms on CPU

GPU Particle Emitters 10 - 20 5000+

NavMesh 371K triangles 1.1M triangles
76 pathing sets in 8 clearance
caches

0 10 20 30 40 50 60 70 80 90

RenderThread

SimulationThread

The Cost of War

• At its worse, the game ran at 90ms per frame on
the consoles.

Threading

• In order to get 200 AI simulating at the same time we had to
thread many game systems from Shadow of Mordor.

• This was a major undertaking that consumed a large portion of
the engineering team and took most of the project.

Threading

Threading

Thread Description

FX Background thread to process FX on the CPU

AI AI updating to support 200 AI

Path Finding Background path finding thread

Path Region Background path region updating thread

Fire Simulation Fire simulation thread

Player and AI Motion Player and AI motion system

• Moved away from using kernel primitives in
favor of lightweight atomic spin locks for
atomic data access protection.

• When a context switch is desired a kernel
primitive is still used.

• The real cost of a context switch is cache
eviction.

Threading – Synchronization Primitives

• Introduced a lightweight multiple readers single
writer primitive

• Reading the state of the physics simulation from
multiple threads is an example.

• Microsoft platforms have a Slim Reader/Writer
(SRW) Locks primitive.

• Sony has an equivalent primitive.

Threading – Synchronization Primitives

• Can be implemented using two atomic spin lock instances
and an atomic counter to track the number of readers.
• First atomic spin lock is used as a reader lock
• Second atomic spin lock is used as a writer lock

Threading – Synchronization Primitives

• Separated workloads between the two CPU clusters
on the consoles to take advantage of the shared
L2$.
• The first CPU cluster executes game play logic.
• The second CPU cluster executes rendering logic.

Threading – CPU Clusters

• Due to the increased complexity of Shadow of War
this resulted in a 10% performance gain.

• Requires that the clusters are not touching the
same cache lines at the same time.
• Black Magic.

Threading – CPU Clusters

• Keep jobs large
• Keep as much code single threaded as possible
• Lowers the level of entry for junior engineers
• Lowers the amount of bugs introduced by concurrency
• Requires less overall synchronization
• Typically results in better use of the CPU cache

Threading – The Monolith Approach

• Move entire systems over to background threads
• Set hard affinities for large systems

Threading – The Monolith Approach

• We fill the CPU gaps with lower priority threads.
• Similar to the concept of Async Compute but for a CPU

core.
• File I/O, streaming, and asynchronous ray casts are

examples.

Threading – The Monolith Approach

Threading – The Monolith Approach

0 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 30

The Monolithic Approach

Threading – The Monolith Approach

• Operations are pipelined through the use of circular
command buffers.

• The pipeline pushes operations in a single direction.
• Each one of these command buffers are then

executed on a dedicated thread that runs on a
dedicated core.

• It allows each pipelined stage to get the full 33.3ms
per frame

Threading – Pipelining

Threading – Pipelining

• When pipelining threads, we guarantee that the
next stage in the pipeline is no more than 1 frame
behind (33.3ms).

• Ideally all pipelined stages are running in parallel,
with a few milliseconds offset between each.

• This will be true if the entire pipeline is bound by
the first stage in the pipeline.

Threading – Dynamic Frame Pacing

• If the entire system is bound by the last stage, we
end up displaying frames that were simulated
several frames ago.

• This is caused by the telescoping nature of
pipelining

• We are always bound by the last stage when we v-
sync.

Threading – Dynamic Frame Pacing

Threading – Dynamic Frame Pacing

SimulationThread

RenderThread

DriverThread

GPU

Display Queue

Display

33.3ms + 33.3ms + 33.3ms + 33.3ms + 33.3ms + 33.3ms = 200ms

• Input latency becomes a problem since input is
evaluated on the simulation thread, up to 200ms
before the frame displayed on the screen.

Threading – Dynamic Frame Pacing

• Our solution is a dynamic frame pacing system.
• This system monitors the display queue on the GPU. If the

queue is full then we are bound by the GPU.
• When we are GPU bound we artificially stall the first

stage, the SimulationThread, so that it takes slightly more
time than it’s allotted.
i.e., Sleep(33.3 – TimeOfSimulationThread + 1)

• This causes the telescope to contract.

Threading – Dynamic Frame Pacing

Threading – Dynamic Frame Pacing

• The SimulationThread is now down to 50ms in the worst
known case

Threading

0 10 20 30 40 50 60 70 80 90

RenderThread

SimulationThread

Renderer

Renderer

Shadow of Mordor Shadow of War

Xbox One API D3D11/D3D11.X Mix D3D11.X with Fast Semantics

PS4 API GNM LCUE

PC API (minimum) D3D11.0 D3D11.1

PC Hardware (minimum) 11_0 11_0

Console Cores 2 1.5

• Too many copies were made between the game to
engine abstraction layer.

• Each constant was set individually then assembled
into a constant buffer.

• Constant buffers were regenerated for every draw
call.

Renderer – Constant Buffers

• We broke up our constant buffers based on update
frequency.

• Accessing constants in the renderer returns a
pointer to the actual constant buffer.

• Exposed constant buffers directly to game through
accessors.

Renderer – Constant Buffers

• Tracked through dirty state and frame code.
• Once sent to the GPU, a new copy is made and the

dirty state cleared.
• Memory is not reused until the frame code is cleared

by the GPU.

Renderer – Constant Buffers

• Binding named constant buffers just sets the
pointer.

• Material Constant Buffers are baked into assets at
cook time.

Renderer – Constant Buffers

Renderer – Constant Buffers
Shadow of Mordor Shadow of War

$Global $Global

Frame

View

Material

RenderTarget

CurrentBones

PreviousBones

Vegetation

Wind

TiledLighting

Shadow of Mordor Shadow of War

$Global $Global

Frame

View

Material

RenderTarget

CurrentBones

PreviousBones

Vegetation

Wind

TiledLighting

Renderer – Constant Buffers

48 pieces X 64 bones

= 307,200 bone transforms per frame

X 2 previous frame X 200 AI

X 4 render stages

= 1,228,800 bone transforms per frame

• Each constant buffer constant was hand sorted by
acquiring heuristics on how often a constant is
used.

• Rarely used constants and constants that were
typically set to 0 were sorted to the bottom of the
constant buffer.

Renderer – Constant Buffers

• Allocated constant buffers only big enough to hold
used constants and constants that were not 0.
• This drastically lowered the amount of memory

accessed.
• Reading past the end of a buffer on the GPU just

returns 0.
• Causes Graphics API error spam but it can be

suppressed.

Renderer – Constant Buffers

• Cached constant buffers with render nodes to reuse
at different stages if they haven’t changed.
• Bones for G-Buffer stage and CSM stages

Renderer – Constant Buffers

• Switched to faster 1st party Graphics APIs
• D3D11.X with Fast Semantics / LCUE

• Removed all frame-to-frame reference counters.
• Lifetimes managed using frame codes only.
• Cached entire Graphics API state.
• Removed redundant state changes to 1st party

Graphics APIs.

Renderer – General Optimizations

• Reduced CPU and GPU cache flushing by allocating
dynamic GPU memory on cache line boundaries
and padding to the end of cache lines then tracking
this memory with a frame code for CPU access.

Renderer – General Optimizations

• Dynamic CPU load scaling
• Pushing out LODs based on CPU load to lower

mesh counts
• Pausing high mip streaming to lower CPU usage,

memory pressure and the cost of physical page
mapping.

Renderer – General Optimizations

Renderer

0 10 20 30 40 50 60 70 80 90

RenderThread

SimulationThread

• The RenderThread is now down to 45ms in the worst
known case

Performance – Memory

• A huge performance win for Shadow of War was
switching all allocations to large 2MiB pages.
• A 20% performance gain over 64KiB pages.
• Large pages reduce Translation Lookaside Buffers

(TLBs) misses which are very costly.
• We preallocate all large pages at process creation.
• Implemented this for PC too, although PC is almost

always GPU bound.

Performance – Memory

Performance – Memory

CPU Memory (2 MiB Pages)
2,048

GPU Non-coherent (2 MiB
Pages)
1,536

GPU Coherent (2 MiB Pages)
256

Texture GPU Non-coherent
(64 KiB Pages)

1,024

• The SimulationThread is now down to 40ms and the
RenderThread is now down to 36ms in the worst known
case

Performance – Memory

0 10 20 30 40 50 60 70 80 90

RenderThread

SimulationThread

Performance – The Final Blow

• Development Builds
• DLLs are used for improved engineering iteration
• Incremental linking is enabled on all projects
• Debug:FastLink is available and used by some

engineers
• The executable is a tiny stub that loads and runs these

DLLs

Performance – The Final Blow

• Retail Builds
• DLLs now compile as LIBs
• Incremental linking is disabled
• The executable is still a tiny stub that now links in the

LIBs.
• Improves runtime performance by about 10%

Performance – The Final Blow

• Retail Builds
• LTCG is enabled on all platforms and all projects, including all

middleware.
• LTCG on Microsoft platforms gave us another 10%

improvement and about a 5% improvement on the PS4.
• PGO is enabled on all platforms.
• PGO improved performance by about 5% on all platforms.
• Make sure to disable COMDAT folding on Microsoft platforms.

• It will counter the gains from PGO.

Performance – The Final Blow

0 10 20 30 40 50 60 70 80 90

RenderThread

SimulationThread

• The SimulationThread is now down to 33ms and the
RenderThread is now down to 30ms in the worst known
case

Performance – The Final Blow

Memory Optimizations

Memory – GPU Virtual Memory

• Modern GPUs use virtual memory just like CPUs.
• Physical memory does not have to be contiguous.
• Physical memory can be mapped and unmapped at

page granularity.
• A single physical memory page can be mapped to

multiple virtual memory addresses.

Memory – GPU Virtual Memory

Physical MemoryPhysical MemoryPhysical MemoryPhysical Memory

Virtual MemoryVirtual MemoryVirtual MemoryVirtual Memory

Memory – 64KiB Pages

• The advantage of using 64KiB pages is that they are
smaller than larger pages and allow for greater
sharing and reuse.

• The disadvantage to using 64KiB pages is that they
are slower to access due to increased TLB misses.

Memory – Mipmap Streaming

• On Shadow of Mordor we streamed mipmaps in
but never unloaded them.
• This was mostly done to lower load times.
• If a texture was used, its high mip was streamed in

• On Shadow of War we needed to stream high
mipmaps in and out to save on memory.
• We used a fixed mipmap memory pool.
• The high mip is 66% of the memory for a Texture2D.

Memory – Mipmap Streaming

• At cook time we analyze every mesh and determine the
largest triangle with the largest texel density. We save it
off.

• At runtime, when rendering a mesh, we project this
triangle into screen space using the CPU and calculate
the approximate mipmap value.

Memory – Mipmap Streaming

Memory – Mipmap Streaming

• The CPU system is throttled by a number of
meshes/materials that can be analyzed per frame
(64), by a frame code per mesh, and by a dampener
to avoid thrashing.
• 1920 meshes tested every second

• The CPU cost of mipmap analysis is fixed at 0.1ms
per frame.

Memory – Mipmap Streaming

• The high mips use a pool of 64KiB pages. This pool
of pages are preallocated at process creation.

• High mips are loaded until the pool is depleted.
• All textures that support high mip streaming are

created without physical memory backing for their
high mip.

Memory – Mipmap Streaming

Base Memory

High Mip Memory Pool

Memory – Mipmap Streaming

• Conclusion
• Using a pool of memory for our high mips saved about

1.0GiB of memory.

Memory – Mipmap Streaming

Memory – Texture2DArray

Memory – Texture2DArray

• Shadow of War uses a fair amount of
Texture2DArrays.
• Terrain
• Character models
• Most structures
• FX flipbooks

Memory – Texture2DArray

• Benefits
• Slices within Texture2DArrays are all sampled at the

same level which is great for blending.
• It is typically easier to avoid branches in the shader to

sample a Texture2DArray than it is when sampling
several Texture2Ds.

• Issues
• Padding - Texture2DArrays on AMD hardware are

stored per mip, per slice. This ends up padding slice
counts to a power of 2. If a texture array contains 3
slices, the memory layout contains 4 slices.

Memory – Texture2DArray

• Issues
• Duplication - If two Texture2DArrays use the same slice,

that slice ends up getting duplicated in memory.
• For example, these arrays are typically used for blending. In

a snowy region everything will get blended with snow. The
snow texture slice will be duplicated in many texture arrays.

Memory – Texture2DArray

• In order to get around padding we manually bind
64KiB pages to the portions of the texture that are
actually read by the GPU.

• We do not back layout padding with physical
memory.

• Packed Mips are mips that are smaller than a 64KiB
page and share a 64KiB page. They are always
backed by physical memory pages.

Memory – Texture2DArray

Packed
MipsStandard Mips

High Mip Memory Pool

Base Memory

Memory – Texture2DArray

• We solved duplication by sharing 64KiB physical
memory pages between the slices.

• Texture2DArrays only contain references to Texture2D
slices.

• At runtime the physical pages of the slices are mapped
onto the Texture2DArrays.

• Each slice is reference counted. Physical memory for the
slice is not freed until all references are gone.

Memory – Texture2DArray

• Packed Mips are smaller than a single 64KiB page,
and remain duplicated.

• This solution also allows us to use the slice as a
regular Texture2D and share it with a
Texture2DArray in memory.

• Cook times were also reduced as we only need to
cook one slice at a time.

Memory – Texture2DArray

Base Memory

High Mip Memory Pool

Packed
MipsStandard Mips

Packed
MipsStandard Mips

Memory – Texture2DArray

• Conclusion
• Avoiding duplication saved us around 300MiB on

average.
• Scene dependent.

• Avoiding padding allowed artists to create non-power
of 2 arrays.

Memory – Texture2DArray

Join us!

We currently have multiple open
positions across all of our departments
at all levels.

https://www.lith.com/careers

MIDDLE-EARTH: SHADOW OF WAR: ASSET PIPELINE GROWING PAINS
Doug Heimer
Friday 10:00am - Room 2010, West Hall

HELPING PLAYERS HATE (OR LOVE) THEIR NEMESIS
Chris Hoge
Thursday 4:00pm - Room 2014, West Hall

SCORING 'MIDDLE-EARTH: SHADOW OF WAR': A POSTMORTEM
Nathan Grigg, Garry Schyman
Wednesday 3:30pm - Room 3006, West Hall

ANIMATION BOOTCAMP: 'MIDDLE-EARTH: SHADOW OF WAR': CREATING
MULTI-CHARACTER COMBAT ANIMATIONS
John Piel, Camille Chu
Monday 11:20am - Room 2010, West Hall

Thank You!

Piotr Mintus (piotr@lith.com)
Technical Director, Monolith Productions

Questions?

