
Memory Management in

Vulkan™ and DX12

Adam Sawicki

Developer Technology Engineer, AMD

Agenda

● Introduction

● Memory Types

● Tips & Tricks

● Libraries

● Conclusions

Introduction

● Previous generation APIs (OpenGL™, DirectX® 11)
manage memory automatically.

You create a resource (e.g. texture, constant buffer), backing
memory is allocated automatically.

● New APIs (Vulkan™, DirectX® 12) are lower level, require
explicit memory management.

The challenge

ID3D11Texture2D* pTexture;
pD3D11Device->CreateTexture2D(&desc, nullptr, &pTexture);

The challenge

It is now your responsibility to:

Create resource

Query it for:
• supported memory types
• required size & alignment

(Sub-)allocate block
of memory

Bind them together

Advantages

Explicit memory management makes it possible to:

● better manage memory

● better optimize for specific platforms

● alias (overlap) transient resources

Memory Types

Memory types: NVIDIA
Example: NVIDIA GeForce GTX 1080 Ti

Video memory

D3D12_MEMORY_POOL_L1

System memory

D3D12_MEMORY_POOL_L0

Memory types: Intel
Example: Intel Iris Plus Graphics 640

Unified memory

Memory types: AMD

Example: AMD Radeon™ RX “Vega”

Vega is a codename for AMD architecture and is not a product name.

Video memory

System memory

DEVICE_LOCAL

D3D12_HEAP_TYPE_DEFAULT

● Video memory. Fast access from GPU.

● No direct access from CPU – mapping not possible.

DEVICE_LOCAL

● Good for resources written and read frequently by

GPU.

● Good for resources uploaded once (immutable) or

infrequently by CPU, read frequently by GPU.

HOST_VISIBLE

D3D12_HEAP_TYPE_UPLOAD

● System memory. Accessible to CPU – mapping
possible.

● Uncached. Writes may be write-combined.

● Access from GPU possible but slow
Across PCIe® bus, reads cached on GPU.

HOST_VISIBLE

● Good for CPU-side (staging) copy of your resources –
used as source of transfer.

● Data written by CPU, read once by GPU (e.g. constant buffer)
may work fine (always measure!)

Cache on GPU may help.

● Large data read by GPU – place here as last resort.

● Large data written and read by GPU – shouldn’t ever be here.

DEVICE_LOCAL + HOST_VISIBLE

● Special pool of video memory.

● Exposed on AMD only. 256 MiB.

● Fast access from GPU.

● Accessible to CPU – mapping possible.
● Written directly to video memory.
● Writes may be write-combined.
● Uncached. Don’t read from it.

DEVICE_LOCAL + HOST_VISIBLE

● Good for resources updated frequently

by CPU (dynamic), read by GPU.

● Direct access by both CPU and GPU – you don’t

need to do explicit transfer.

● Use as fallback if DEVICE_LOCAL is small and

oversubscribed.

HOST_VISIBLE + HOST_CACHED

D3D12_HEAP_TYPE_READBACK

● System memory

● CPU reads and writes cached (write-back).

● GPU access through PCIe.
GPU reads snoop CPU cache.

HOST_VISIBLE + HOST_CACHED

● Good for resources written by GPU,

read by CPU – results of computations.

● Direct access by both CPU and GPU – you don’t

need to do explicit transfer.

● Use for any resources read or accessed randomly

on CPU.

Memory types: AMD APU

● AMD integrated graphics
reports various memory
types, like discrete AMD
GPU.

● Reported DEVICE_LOCAL
heap can be any size,
0 B … few GiB.

Unified

memory

Memory types: AMD APU

● Memory is really unified – all heaps are equally fast.

● If you detect integrated graphics:

VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU:
● Count size of all memory heaps together.

● Put your resources in whatever memory type meets your

requirements.

Tips & Tricks

Suballocation

● Don’t allocate separate memory block for each

resource (DX12: CreateCommittedResource).
● small limit on maximum number of allocations (e.g. 4096)

● allocation is slow

● Prefer not to allocate or free memory blocks during

gameplay to avoid hitching.
If you need to, you can do it on background thread.

Suballocation

Allocate bigger blocks and sub-allocate ranges for

your resources (DX12: CreatePlacedResource).

● 256 MiB is good default block size.

● For heaps <= 1 GiB use smaller blocks

(e.g. heap size / 8).

Over-commitment

What happens when you exceed the maximum amount of physical
video memory?

● It depends on the driver.
● Allocation may fail (VK_ERROR_OUT_OF_DEVICE_MEMORY).
● Allocation may succeed (VK_SUCCESS).

Some blocks are silently migrated to system memory.

● Blocks may be migrated to system memory anyway.
● You are not alone – other applications can use video memory.
● Using blocks migrated to system memory on GPU degrades

performance.

Over-commitment – Vulkan™

● Size of memory heap: VkMemoryHeap::size.

● No known way to manually control residency of memory

blocks.

● No known way to query amount of used or available free

memory.
You need to estimate.

Over-commitment – Vulkan™

● Sum up the size of your VkDeviceMemory blocks.

● Remember about implicit resources that also

occupy memory.

● Leave some margin free (e.g.

20% of DEVICE_LOCAL,

33% of DEVICE_LOCAL + HOST_VISIBLE).

Over-commitment – DX12

● Size of memory types:
DXGI_ADAPTER_DESC

● Current usage and available budget for your program:
DXGI_QUERY_VIDEO_MEMORY_INFO

● You can register for notifications:
IDXGIAdapter3::RegisterVideoMemoryBudgetChangeNotific

ationEvent

Over-commitment – DX12

● You can page allocated blocks (heaps) in and out of video
memory:

ID3D12Device::Evict, MakeResident,
ID3D12Device3::EnqueueMakeResident

● You can set residency priorities to resources:
ID3D12Device1::SetResidencyPriority

● You can inform DX12 about minimum required memory:
IDXGIAdapter3::SetVideoMemoryReservation

Mapping

● Having entire memory block persistently mapped is
generally OK.

You don’t need to unmap before using on GPU.

● Exceptions:
● Vulkan™, AMD, Windows® version < 10: Blocks of

DEVICE_LOCAL + HOST_VISIBLE memory that stay
mapped for the time of any call to Submit or Present are
migrated to system memory.

● Keeping many large memory blocks mapped may impact
stability or performance of debugging tools.

void* ptr;

Transfer

● Copy queue is designed for efficient transfer via PCIe
● Use it in parallel with 3D rendering, even asynchronously to

rendering frames. Good for texture streaming.
● Use it also for defragmentation of GPU memory in the background.
● Do your transfers long before the data is needed on graphics

queue.

● GPU to (the same) GPU copies are much faster on graphics
queue.

● Use it if graphics queue needs to wait for transfer result anyway.

Libraries

Direct3D Residency Starter Library

● https://github.com/Microsoft/DirectX-Graphics-
Samples/tree/master/Libraries/D3DX12Residency

● Library from Microsoft®

● MIT license
● easy to integrate – single C++ header

● manages residency of DX12 heaps / committed resources

● implements essentially the same memory management
behavior that a DX11 app would get

https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Libraries/D3DX12Residency

Direct3D Residency Starter Library

Instead of just calling ExecuteCommandLists:

● you pass command lists to be executed together with a list
of resources they use

● the library:
● queries GXGI for memory budget
● calls Evict for least recently used resources
● calls MakeResident for resources that are going to be used
● calls ExecuteCommandLists

Vulkan Memory Allocator

● https://gpuopen.com/gaming-product/vulkan-memory-allocator/

● Library from AMD
● MIT license
● easy to integrate – single header
● interface in C (same style as Vulkan™), implementation in C++
● well documented

● Already used in some AAA titles.

● Releasing final version 2.0.0 now! See also Dustin Land et al. talk “Getting
Explicit: How Hard is Vulkan Really?”

https://gpuopen.com/gaming-product/vulkan-memory-allocator/

Vulkan Memory Allocator

● Functions that help to choose the correct and
optimal memory type based on intended usage.

● Functions that allocate memory blocks, reserve
and return parts of them to the user.
● Library keeps track of allocated memory blocks,

used and unused ranges inside them,
● respects alignment and buffer/image granularity.

Vulkan Memory Allocator

VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
bufferInfo.size = 65536;
bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

VmaAllocationCreateInfo allocInfo = {};
allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

VkBuffer buffer;
VmaAllocation allocation;
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

● Functions that create image/buffer, (sub-)allocate memory for it and bind

them together – all in one call.

VmaDumpVis.py

Auxiliary tool that visualizes JSON dump
from Vulkan Memory Allocator.

python VmaDumpVis.py -o Image.png
VmaDump.json

Released just now!

Image

Buffer

Conclusions

Conclusions

● New graphics APIs (Vulkan™, DirectX 12) require more explicit
memory management.

● Creating resources is a multi-stage process.
● Former driver magic is now under your control.

● You need to deal with differences between GPUs.

● By following good practices you can achieve optimal
performance on any GPU.

● There are open-source libraries that can help you with this task.

References
● Vulkan Memory Allocator (AMD)

https://gpuopen.com/gaming-product/vulkan-memory-allocator/

● Direct3D Residency Starter Library (Microsoft)
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Libraries/D3DX12Residency

● Vulkan Device Memory, Timothy Lottes, GPUOpen
https://gpuopen.com/vulkan-device-memory/

● Vulkan Memory Management, Chris Hebert, NVIDIA Developer
https://developer.nvidia.com/vulkan-memory-management

● What’s your Vulkan Memory Type?, Mathias Schott & Jeff Bolz, NVIDIA Developer
https://developer.nvidia.com/what%E2%80%99s-your-vulkan-memory-type

● DX12 Do’s And Don’ts, NVIDIA Developer
https://developer.nvidia.com/dx12-dos-and-donts

● Vulkan Hardware Database, Sascha Willems
http://vulkan.gpuinfo.org/

https://gpuopen.com/gaming-product/vulkan-memory-allocator/
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Libraries/D3DX12Residency
https://gpuopen.com/vulkan-device-memory/
https://developer.nvidia.com/vulkan-memory-management
https://developer.nvidia.com/what%E2%80%99s-your-vulkan-memory-type
https://developer.nvidia.com/dx12-dos-and-donts
http://vulkan.gpuinfo.org/

Thank you

● Dominik Baumeister

● Lou Kramer (@lou_auroyup)

● Matthäus G. Chajdas (@NIV_Anteru)

● Rys Sommefeldt (@ryszu)

● Timothy Lottes (@TimothyLottes)

https://twitter.com/lou_auroyup
https://twitter.com/NIV_Anteru
https://twitter.com/ryszu
https://twitter.com/TimothyLottes

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of
such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR
ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE
OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon and combinations thereof are trademarks of Advanced Micro
Devices, Inc. in the United States and/or other jurisdictions. OpenGL and Vulkan are trademarks of Khronos Group, Inc. PCIe is a registered trademark of
PCI-SIG. Microsoft, Windows and DirectX are registered trademarks of Microsoft Corp. Other names are for informational purposes only and may be
trademarks of their respective owners.

Backup

Dedicated allocation

● Some resources may benefit from having their own,
dedicated memory block instead of region suballocated
from a bigger block.

Driver may use additional optimizations.

● Use for:
● Render targets, depth-stencil, UAV
● Very large buffers and images (dozens of MiB)
● Large allocations that may need to be resized (freed and

reallocated) at run-time.

Dedicated allocation

● DX12:
ID3D12Device::CreateCommittedResource function

● Vulkan™:
VK_KHR_dedicated_allocation extension

Cache control

● Vulkan™ : Any memory type that doesn’t have
HOST_COHERENT flag needs manual cache control:

● vkInvalidateMappedMemoryRanges before read on CPU
● vkFlushMappedMemoryRanges after write on CPU

● In practice, all PC GPU vendors (AMD, Intel, NVIDIA)
support HOST_COHERENT on every memory type
that is HOST_VISIBLE.
No need to worry about it on current Windows PCs.

Aliasing

You can alias different resources – bind them to the same or
overlapping range of memory.

● It saves memory.

● Good for transient resources (e.g. render targets) used
only during part of the frame.

● After the memory was used by different resource, treat
your resource as uninitialized.

…unless you really know what you’re doing.

Miscellaneous

● Vulkan™: Memory requirements (e.g. size) can vary for
different resources (e.g. images) even when created with
same parameters (format, width, height, mip levels etc.)

It really happens in the wild. Be prepared for that. Don’t cache
result. Query each resource for requirements.

● Don’t use images with TILING_LINEAR (DX12:
LAYOUT_ROW_MAJOR) unless you have to.

● Use TILING_OPTIMAL (DX12: LAYOUT_UKNOWN).
● Copy images from/to buffers.

Miscellaneous

● Avoid VK_IMAGE_LAYOUT_GENERAL (D3D12:
D3D12_RESOURCE_STATE_GENERIC_READ). Always transition
image to appropriate VK_IMAGE_LAYOUT_*_OPTIMAL.

● Avoid VK_SHARING_MODE_CONCURRENT on render target
textures. It disables DCC compression.

Prefer VK_SHARING_MODE_EXCLUSIVE and do explicit queue family
ownership transfer barriers.

● Avoid VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT.
If you really need different formats e.g. to interpret as linear/sRGB, use it
together with VK_KHR_image_format_list extension.

