
In today’s talk we will cover the visual effects technology and tools of the Destiny
franchise.
Destiny is a shared-world first-person shooter,
in a mythic science fiction setting.

It is a world filled with “Space Magic”

1

Space magic basically means a lot of FX. Critical to our game. Composed of many
pieces.

2

Most important piece is the particles (although we will talk about a lot more than just
particles today).
We want lots of interesting particle motion. Natural, random motion, yet also
controllable and directable in a way that’s intuitive for artists.

3

Connecting our fx to the game world.

4

Complex timing of many distinct FX pieces, like lens flares, lights, particles and
animations. Again, all of which could be intricately connected to game world state,
like enemy health.

5

And potentially a large number of these FX happening at once, so performance is
quite the challenge as well.

6

We decided we wanted to share two related yet distinct bodies of work.

7

First is what we call our VFX framework. Here you’ll learn what it’s like to create an FX
system in the Bungie engine (and how it’s all sequenced, connected to gameplay, and
how we give a lot of expressive power to our artists).

8

Second is a miscellaneous list of particle specific features that we found really useful.
We will call out when these features benefitted from our framework, but they do not
require our framework nor do they require each other.

9

Hello, I am Ali, Visual Effects Tech Art Lead.
Today I am going to walk you through our Visual Effects framework.

10

This is a high level conceptual overview of our framework.
I will walk you through it piece by piece

11

The first major tool of our framework is the Sequencer

12

This is the thermal flare grenade
Its visual effects are built entirely as a “Sequence”.
<Advance Slide>
This is what the sequence for it looks like in our editor.
It’s basically a hierarchy of nodes, called events, sequenced over time.

13

This is the thermal flare in-game, it demonstrates many of our vfx features.
Next I will reconstruct it one event at a time.

14

I start with an empty sequence.

15

I add a scorch decal

16

I add an additive decal

17

I add a lens flare

18

I add a point light

19

I add some core particles

20

Add some radiating particles

21

I add some hot embers

22

I add some swirly solar flare embers

23

It doesn’t have to stop there
It can also have audio event
and a damage event
In fact

24

It can have a whole lot of events.
The sequencer is not just a tool for vfx. It is a core tool across many departments:
VFX, Design, Audio, Animation, UI…
They can all collaborate to author a wide range of performances
Like <Advance Slide>

25

the fire fx in this scene

26

Or sand-boxy combat events

27

Including our player supers

28

Or map load screens

29

Or the crazy scripted raid spectacles

30

Or in-engine cinematics

31

Or even our dynamic skyboxes
These are all are built as sequences

32

A sequence has two types of nodes
<Advance Slide>
Flow nodes
<Advance Slide>
Event nodes.
Flow nodes basically control how all their event nodes flow over time.
Flow nodes can contain many event nodes.

33

They can also contain more flow nodes
<Advance Slide>
for more complicated sequences.

34

We have different flavors of flow nodes

Parallel means all the events play at the same time.
<Advance Slide>
Serial means the events will play one after the other as each one completes.
<Advance Slide>
Random means only one of the event will be randomly selected to play.

35

Flow nodes control looping; they can loop forever or have a finite loop count

36

To make it more clear, I will build a conceptual sequence from scratch.
For Ex: a lightning strike in the skybox,
I would need some sequence of events, like this

37

At time 0 I wait for a random duration between 20 and 40 sec
Horizontal sequencing means a serial flow of events

38

After that, I play in parallel a particle system and a light
These represent the lightning vfx

Vertical sequencing means parallel flow of events

39

I serially wait another random duration between 5 to 10 sec

40

After that I spawn an audio for the thunder sfx
The delay gives the impression of travel time.

41

And after all that I loop

42

The sequence for this performance would look like this in the tree view.

I’ll compare the elements.

43

Here is the delay

44

Here is the lightning elements playing in parallel

45

Here is the delay and audio playing serially

46

It might take a little getting used to, but we find that the tree view is a very nice and
compact way of representing sequences.

They would otherwise need to be authored in something like a node graph UI.

47

We do however have an alternative UI : the timeline
With it you can more easily see relative timing between events.
<Advance Slide>

Here is the conceptual chart for reference.

If you are wondering how complex these sequences can get, lets check out a player
super ability cast

48

This is a shipping sequence, the stormcaller super ability cast.
In this one sequence, multiple departments have timed their events for a cohesive
performance.

49

Here is a UI transition

50

a camera transition

51

a character animation

52

And this one little event node over here
<Advance Slide>
is actually a whole other nested sequence…
which looks like this

53

Inlining, or nesting, sequences is great for two reasons:
1) it allows different teams to concurrently iterate on the same performance.
2) it allows us to build modular content that we can plug and play in many other
sequences.

This is critical for us to rapidly evolve our content. By updating just a few sequences,
we can propagate changes to the entire game.

54

For example, on destiny 1 I made these impulse particles that could influence water
and foliage

55

I packaged these impulse particles up as 1 sequence
And I inlined it into every explosion in the game.

56

In destiny 2 Brandon added support for gpu particles, like this snow effect here
We soon realized it looked strange that the snow didnt react to explosions

57

So Brandon added some new tech to solve this: Impulse particles that can push gpu
particles from other systems.
Now this feature came in late in the project.

58

By simply changing this one sequence
From this <Advance Slide> Into this
I added this feature to every explosion in the game.

Without inlining we wouldn’t have been able to propagate this new feature that late
in the project.

This is the power of inlining and modularity.

59

So to recap, here is the conceptual chart of our framework.

60

We have the sequencer which can contain many events, including vfx events.
<Advance Slide>
And the sequencer can inline many other sequences
<Advance Slide>

61

Or this for simplicity

The Sequencer allows multiple teams to collaborate on the same performances

Teams can sequence their events over time in very complex ways.

Inlining allows us to build a modular library of vfx that we can reuse & evolve as new
features come online.

62

And with that we’ve unlocked the first part of our overall framework.

63

The next major part of our vfx framework is channels.

64

A channel is a property on a gameplay object that can be inspected at runtime.

Example channels on a player would be:
• health / aim_vector (which I am showing here)

Channels on a weapon would be:
• damage type, ammo count

Any gameplay channel can be used by the sequencer

65

In the previous section we saw that the sequencer uses flow nodes to control HOW
events activate over time.

The sequencer can also control IF events activate at all; using conditions checks on
channels.

If you click on this flow node here…
<Advance Slide>

66

You can see its property panel on the right
And in there you can set a condition check.

67

In this example, the channel I am looking at is health

68

And the condition says: if my health channel is greater than 0.5 then the flow node
can activate.

69

In Destiny, we have several different damage types.
As you can tell by the muzzle flashes here each has its own color and visual language.
And if you look at a muzzle flash sequence…

70

It would look like this.
You might be wondering why there are so many events for just a muzzle flash.
Well, not all of them activate at the same time.
We use channel conditions to decide which ones activate.

71

First, the sequence checks for the damage type channel of the weapon, and only
activate the nodes that match
<Advance Slide> these nodes are the kinetic and shared muzzle flash (we’ll come
back to the shared ones in a bit)
<Advance Slide> these are the thermal
<Advance Slide>…

72

Second, we check for whether the weapon is in FP or TP

These nodes <Advance Slide>x2 only play if the weapon is in FP

Why do we not use the same vfx? Because we want to hand craft vfx that have been
tuned and optimized for each camera type.

73

And these two conditions compound so that only one these small boxes ever
activates.

74

This is just one shipping example of how we use gameplay channels in the sequencer.

75

A second really powerful aspect of channels is that we can define our own custom
channel right in the sequencer.
You can see one here
<Advance Slide>

What this gives us is an arbitrary keyframed curve we can consume is ALL vfx events
in the sequence.

76

Here is an example video of a vex boss Argos in a test map.
All the VFX are being synchronized with a single custom curve called
“charge_intensity”

In fact the custom channel here is also driving the animation blend.

The best part here is that designers can change around the duration of the custom
channel and everything just works.

77

Going back to our conceptual chart. This is where we left things off

78

We saw how sequences can define their own custom channels
Like with the vex boss

79

We saw how gameplay channels
<Advance Slide>
Like damage type and camera type can be used by the sequencer

80

And with that we’ve unlocked the next part of our overall framework.

81

• The next major tool I want to talk about is the shader graph.

82

Going back to our the thermal flare explosion sequence
<Advance Slide>
We’ve talked a lot about vfx events, but what’s inside them?
If I click one of these events, you would see:
<Advance Slide>

83

A shader graph embedded directly in the sequencer.
<Advance Slide>
On the upper left you can see the tree view of the sequencer with an particle system
event selected.
<Advance Slide>
In the center you see the shader graph of the particle system.
<Advance Slide>
On the right you see the shader property panel of my <Advance Slide> selected
shader graph node

84

This is the particle system shader root node with its primary components.

85

And this is what a basic particle system node looks like.
This shader graph not only defines the appearance of a particle,
<Advance Slide> but also defines emission
<Advance Slide> and motion
<Advance Slide> this node graph controls ALL aspect of the particle system.

86

Emission defines the initial state of particles as they spawn.
where we create them
what initial velocity they get
In this example we have a ring emitter, the particle are set to pick a random position
along a circle

87

Motion defines how particles move over time.
It controls things like Rotation, Gravity, Acceleration, Air Friction
In the example we added some randomized gravity

88

Appearance defines how we render each particle.

Appearance controls the color, alpha, blend mode, lighting, size, etc…

89

Here is a zoomed-out view of our simple particle system node graph.
What is this box?
That is what we call a template

90

Artists can drag shader graphs into any other graphs, to inherit from them.
Nodes in a box all belong to one shader that is being templated.

91

Parameters that have been set in the original shader being templated here appear in
blue, to indicate the are being inherited.

Parameters that have been set directly in this shader graph appear green.

I can override any parameter in the template and it will turn green.

92

Artist can inherit all of a template like I am doing here
<Advance Slide>
With this one wire connection

93

Or they can selectively inherit specific nodes within a template, like the motion node
here
<Advance Slide>
Selective inheritance.

94

You can drag in as many templates in as you need.
This one shader here is built from a ton of other templates.

This might seem messy but with a few key strokes, artist can hide anything they don’t
want to see
They can take a messy graph like this and reduce it to this

95

But most importantly, Artists can entirely bypass nodes as needed

For example, in this emission template we can bypass the point emitter
<Advance Slide>

96

And change it to a sphere emitter
While still inheriting the velocity <Advance Slide> from the original template
You can’t do that with blackboxing

97

Templating allows us to build shaders is a very modular and resuable way across all
our shader types.

Templating goes beyond blackboxing because artists can bypass templated nodes and
appending new ones as needed.

Artists can inherit all or some nodes.

As new features come online, we just modify a few templates to propagate changes
across the entire game.

Tons of content management power here.
Brandon will also show more examples of templates.

98

One last aspect of our node graph that I want to mention, is our ability to run audits.
We can search for shader parameters, and show their values
Across the entire game

99

here I am looking at the “fade range“ parameter
And this one value here is bad, it will cause a divide by 0 in the shader, which causes
graphical corruption artifacts on the consoles
Auditing our shaders really lets us proactively find outliers
1) sanity check values
2) find bugs
3) Optimize

100

If needed we could also update the script to fix up the values it finds.
As a TechArtist, I am constantly evolving our shader graph nodes in response to
feature development, feedback, optimizations.
It is super valuable that we can fixup our shader values across the entire game if and
when we change the underlying source code of any node.

101

Back to our chart here. This is where we left things off.
In this section we talked about

102

The shader graph and how it can be built from more shader graphs

103

Or this for simplicity

104

And with that we’ve unlocked the next part of the framework

105

In this last section I will talk about shader expressions

106

In this example, I am looking at the ring emitter shape of my particle system
I select that node and see the properties on the right

107

I can set the radius to a constant value of course but I can also

108

convert it into an expression. In this expression I am lerp’ing between 1 and 5 based
on a per particle random.
This would effectively turn the ring emitter into a disc emitter.

So what is this particle_random?
Perhaps the most powerful aspect of our fx shader graphs is that they have special
inputs relevant to the shader type
For example, in a particle shader, we have:

109

Particle_random: is a random value between 0 and 1.
Particle_age: is a 0 to 1 value, normalized over the lifetime of the particle.
Particle_system_age: is a 0 to 1 value, normalized over the lifetime of the system.
particle_camera_distance, collision_count… And so many more!

110

These are just a few of the inputs we can use in our particle shaders to create
expressions.

The exact list changes per parameter and shader and is context sensitive.
The main idea here is that any parameter in any shader has special inputs like these
that are automatically available.
For ex: lights we have a light_age shader param input, similar to particle_age.

111

So on the fly, I could type any of these parameters here in this expression and it will
update in realtime.

112

More technical artists could go a little further and type more complex expressions.

113

Or they could go a lot further.
Expressions can be as complicated as you want.
And the best part is that they are not evaluated per pixel. They are evaluated on the
cpu per frame or on the gpu per particle, so they are cheaper.

114

We have alternative UI for creating expressions: our spline editor.
Here is my min
Here is my max
And this is the domain I am blending over

115

These two expressions are identical by the way
They are both picking a random number between 0 and 1 per particle

116

Similar to the typed expressions, artists can expand this domain dropdown list here
<Advance Slide>
And switch up the inputs at a whim to experiment with different results

117

they can add different stops along a curve <Advance Slide> effectively doing a remap
from my x axis to my y axis here.

118

they can add keyframes of course.

119

And change the min and max to be expressions as well

120

Change the domain to be an expression

121

They can take any expression <Advance Slide>, and multiply it <Advance Slide> with a
second expression <Advance Slide>.
Each expression can use different inputs.
They can keep on chaining expressions like this indefinitely, using add, multiply,
subtract and divide operations.

122

And I can still convert all the <Advance Slide> mins/maxes/domains into more
expressions!
Each can have with different or many shader inputs like particle_age or
particle_random.

Now keep in mind that this expression is just on a single parameter.

123

I can put these expressions <Advance Slide> on many or every shader node
parameter. Across all shader types. At a whim.
And this gives us all the flexibility and expressive power.

124

This is an simple example. This is the arc flux grenade.
For explosion sparks we typically use a cone emitter, but that usually gives a
distribution that is too uniform.
With a single expression we were able to randomize the emitter to give it a more
natural chunky look.

125

Remember the damage type channel we used in muzzle flashes?
We used it in the sequencer as a condition.
Well we can use it inside the shaders as well!

126

In the muzzle flash light shader I can use the dmg type channel <Advance Slide> to
tint the light to match the damage color.

127

You can see the lighting bouncing off the characters here change color with the
damage type.
So just like artists can type in any shader parameter input into their expression, they
can also type any gameplay as well.

128

Not only that, but artists can just as easily type in any custom channels into an
expression as well!
Like the vex boss charge channel.

Lots of expressive power here.

Brandon will also show more examples of expressions in general.

129

And with that we’ve unlocked the last part of the framework.

130

<Advance Slide> Sequences can have custom channels, like the vex boss charge
intensity
<Advance Slide> Gameplay object have gameplay channels like damage type
<Advance Slide> Shader graph have shader parameter inputs like particle_age

131

And all these things can be used by expressions.
This right here is the heart of our shader and vfx tech.

132

Our ability to create complex expressions
at a whim
on any parameter
across particle appearance, emission and motion;
as well as any of our shader types

That, I think, is the secret sauce of our vfx.

133

134

135

Reminder of what this section is all about. Miscellaneous list of particle features. Do
not require each other nor do they require the framework. We will call out, however,
where they benefit from the framework.

136

137

Can also call these “partial coverage” technique. Anti-aliasing in particular was critical
to Destiny 2.

138

This should become clear as we go through the three examples.

139

What is motion blur in this context? The diffusion of light over time. Over the length
of the exposure of the camera. Light spreads in the direction of motion, taking on
appearance larger than it actually is, while decreasing in apparent brightness relative
to what it would be while stationary.

By E01 - originally posted to Flickr as London bus, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=4575184

140

Opacity of bullet casing is diminished in some places, because at those pixels the
bullet casing was not present for the entirety of the exposure.

141

In games, often motion blur applies only to opaque objects. Might have a velocity
buffer that stores the velocity at each pixel for the opaques.

142

Transparencies can stretch along the direction of the motion based on the particle
speed, and decrease the brightness a corresponding amount.

This is an approximation, but can work well for small quad shaped particles.

Might call it a partial coverage problem with diffusion approximation.

143

This is the fist of havoc impact effect, or sometimes called the titan smash. We’ll be
seeing this more throughout this section.

144

If it wasn’t clear in the last video, this one will hopefully make it more clear, especially
when it pauses at the end. Also random dancing guy lol.

145

Again, it’s an approximation to real motion blur, but it works well and we used it
everywhere.

146

In this context, depth of field is the diffusion of light through a lens.

147

Again, in games this is usually applied to opaque objects. Depth buffer drives it.

For instance, look at this fern in the foreground.

148

We apply your standard screen space depth of field to it.

149

But now a solar grenade goes off in your face. Transparent sparks are sharp despite
being at the same depth as the fern. They should be blurry.

150

Apply the same idea as before. This time instead of based on the particle speed, it
will be based on how in or out of focus the particle is (circle of confusion).

151

This is again an approximation that works well for simple geometry like a small
particle quad.

Can also use a blurrier mip level for the texture, or blend to an entirely different
texture, like bokeh style texture.

152

This is used in the Nessus destination in Destiny 2.

153

Expression parameter inputs enabled artists to prototype this on their own. Not the
final solution we want, but a cool example of our framework empowering artists to
experiment.

We intended to actually implement this fake depth of field in code, and give it a nice
wrapper node and intuitive interface, but once we saw that an artist was already
doing it, it lowered in priority so we never did.

154

Again, this one ended up being the most critical of the three examples to Destiny 2.

155

We are interested in a particular case of aliasing, called undersampling. Here we have
a quad that is smaller than the size of a pixel, and thus we have no guarantee that it
will be covered by a pixel, and thus it seems to phase in and out of existence.

156

157

Here’s our titan smash impact effect again. If we don’t do anything to combat
undersampling, we get this lovely mess.

158

Super sampling is a way to combat this. Simply take many samples for each pixel,
then average those samples. But of course that’s expensive.

159

Again, we could call this a partial coverage problem.

160

161

So for our translucent particle quad, we can do the same thing we did for motion blur
and depth of field, which is to increase the size of the particle and at the same time
decrease opacity, this time based on the screen coverage of the particle, which is
calculated from its distance, size, and also the resolution of the frame.

162

163

164

Works at extreme distances as well. As the camera distance increases, we keep
increasing the size of the particle so that it covers a single pixel, while further
decreasing the particle opacity.

165

One of the reasons this was super important was because we had a lot of effects that
we previously would have done entirely with texture sheets or texture warps that
were converted to use GPU particles. For instance this snow texture. But textures
have the advantage of mip maps, which counter undersampling. So this anti-aliasing
trick ended up being super valuable.

166

167

Speaking of snow, here’s a snow system with GPU particles.

168

169

170

Here’s standard particle near fade. At a certain distance each particle starts to fade
out, until it is completely transparent, and then thrown offscreen so we don’t pay any
perf for it.

171

Sometimes we call the visual look the “fade wall”. You get this sense there’s this wall
in front of you at all times, and as soon as particles hit the wall they quickly fade out.

172

Here’s standard near fade again just to reiterate the inconsistent performance. Perf
gets worse as you approach the system, until you the pass fade wall, and then it’s
suddenly better. So that’s not great. We want to smooth out that performance.

173

Randomize the fade distances per particle just a bit. In other words, jitter them. We
expect that to fix both our problems.

174

Here’s the jittered near fade. We’ll show a side-by-side video next to make it more
clear, but it provides a more gradual fade of the particle. Sort of like the system is
gradually thinning out as you approach it.

Gets rid of the noticeable “fade wall” issue, and yields more consistent perf because
as you approach the system, and the screen coverage increases, we are more
gradually compensating by using fewer and fewer particles.

175

176

177

178

To explain what the perf hammer is, first let’s go back to the jittered near fade again.
We realized that with jittered near fade we had built the ability to thin out a particle
system at will. For instance, we could thin out a particle system not based on distance
to camera, but instead based on current GPU performance. And this is what we call
our perf hammer. Idea is to thin out particle systems when the perf is bad, and
gradually let them fill back in when the perf is acceptable again.

179

How to drive the perf hammer? Ie how to measure the current GPU performance.

Offline analysis could be used for a number of different things, and I’ll talk it about it
more on the next slide, but the general idea is let’s figure out which particle systems
are expected to be the most expensive, and then at runtime we can limit our search
to only those systems and do a further runtime analysis of, for instance, screen
coverage of the particles.

We end up using a combination of the last two.

180

We build an offline report with this information.

181

This number on the right is the heuristic I just mentioned.

182

183

184

This is one of our more proactive methods for achieving perf. Whereas the perf
hammer is one of our more reactive methods for achieving perf.

185

186

187

188

Imagine the length of the yellow arrow is smaller than our threshold, so we call this a
collision.

189

190

Imagine the length of the arrow is greater than our threshold, so we miss this
collision.

191

192

193

Arrows point in different directions, so we correctly detect the collision.

194

Use depth and normal similarity to determine if previous frame depth is from the
same surface is the current frame depth.

195

Titan smash impact effect again. Particles have a very high initial velocity.

196

197

198

199

200

201

202

Ideally the surface would specify friction as well, but we’ll take what we can get.

203

204

205

Here’s some particles that change behavior and appearance after the first collision is
detected. It’s a good example of what’s possible in the Destiny Engine, because since
the collision count is one of our expression parameter inputs, we can change
appearance properties on collision, like making the particles brighter, or drastically
changing the motion properties after collision.

206

207

The idea is to use shape primitives to control particle motion like points, planes, and
spheres. It’s very similar to attractors or repulsors seen elsewhere, but extended to
use a variety of shapes instead of just points.

208

Here’s a simple example using a point attractor. The yellow point is debug only. It’s
our visualization of the motion primitive. In this video I’m modifying the strength of
the attractor and seeing that update immediately, and I can also modify the position
of the point attractor and see its influence change and the debug visualization
change.

209

Here’s an example of a line motion primitive. Every frame, each particle calculates the
point on the line it is closest to, and then accelerates towards that position. Thus the
particles propagate forward but create this interesting oscillating shape.

210

Now let’s go back to the point attractor and see where expressions and parameter
inputs can get us.

211

212

We can see the particles sticking to this spherical shape, which is accomplished with a
sphere motion primitive. Each time the bubble “breaths” that’s accomplished with an
expression on the sphere radius, driven over the age of the system instance. A vector
noise texture provides these sort of clumpy snake patterns around the sphere.

213

We also provide methods for more directly influencing the motion of the particle, like
forcing particles in an orbital pattern, as opposed to trying to use a standard point
attractor to accomplish the same thing which can be difficult to fine tune. In this case
it makes it easy for the artist to match the motion of the particles, which are the little
orbiting bits here, with the rotating pool of energy underneath, which is an animated
texture warp.

214

215

216

In conclusion, I wanted to give a quick recap

217

We talked about the major parts of our framework

218

We saw how each part provides inputs that can be used by expressions
Artist can freely create complex expressions across all params across shader types

It gave them tons of flexibility, expressive power, and creative freedom

219

From a house keeping and content management perspective
We rely heavily on modularity
<Advance Slide>
Sequences can be built from more sequencer (inlining)
Shader graphs can be built from more shader graphs (templating)
Expressions can be built from more expressions

The more modular our content is, the more we can reuse and evolve it over time.

220

We shared with you a grab-bag of features that was really high value for us
Many of these are framework-agnostic, can be applied to any framework
Within our framework, though, these synergized super well with expressions, shader
param inputs and templates
and really empowered artists to come up with things we could have never
anticipated.

221

Alright! Thanks you all for your time
And thanks to these teams for their love and support

222

For a more technical deep-dive, check out our previous talks
on our shader and particle technology

223

If you want to know more about our graphics tech, check out this other Bungie talk
at 3:30 today
“Physically Inspired Shading in Destiny 2“

224

Bungie is hiring! Check out our career page.

225

Here’s our info, get in touch.
And with that, we’ll open the floor to questions.

226

