
Hello!

I’m Richard Katz, Senior Technical Artist on the
World of Warcraft team at Blizzard Entertainment
in Irvine, CA. I’ve been at Blizzard for 3 years, but
I’ve been a professional Game Developer for over
20 years. I spent my first 7 years as a 3D Character
Artist, Animator, and Lead Artist. I’ve spent the
past 12+ years as Technical Artist specializing in
Character Rigging and Animation Tools.

Thanks for coming. This is my second time
speaking at the Tech Art Boot Camp, the first time
was in 2015

Not too long ago, I had heard the terms “dot
product”, “cross product”, “transformation matrix”
but I didn’t really know what they were or how to
use them. Only about 6 or 7 years ago, something
finally clicked and I figured out just enough to get
myself into trouble. But I thought if I’m just
figuring this out now, everyone else must already
have mastered this stuff, right?

After putting together a python matrix module at
work, I ran a quick demo and tutorial for my team,
and realized that even some really smart people I

work with never really had to deal with matrices
and vectors that much. They appreciated the way I
broke it down for them and told me they
understood it a little bit better after the meeting.
This talk evolved out of what I put together for
that demo.

There will be some math, but don’t panic. What I
want to do is take those ugly lists of numbers, and
try to show you that you can visualize them as
pretty arrows and triangles, and that they can
mean the same thing. If I can figure this stuff out,
then you can too!

Bend your index finger. There are equations that
can describe that motion, and how the parts relate
to each other. It all starts with math.

For some of you, this might be old news, but I hope
I can try to help some people visualize it in a new
way

I’m going to take those basic concepts and put
them together into a couple of example rigging
applications.

I come from an art background. Some rare artists
can put a pen to paper and create a fully-formed
image from their mind through their hand and
onto the page

But complex tasks usually require one to break a
problem down into manageable parts. Character
Rigging is a series of Problems to be solved. Like
any problem, first we analyze it. Then we break it
down to smallest practical parts, and solve those
smaller bits. Finally we put the parts back together.

When teaching figure drawing, an artist learns how
to break a character into basic primitive shapes:
Cylinders, Spheres, and Cubes.

When I was building 3D Models, I worked in very
much the same way, with actual primitive shapes
that I molded and welded together.

In rigging, I’m similarly putting together building
blocks: such as an FK Chain or a Limb.

Let me tell you a story. When building rigs for my
last project, I started with a root control, a hip
control, a spine, a head, arms, legs.

Then I got to the fingers, and I wanted to make a
single function that built controls for all 5 fingers. 1
joint fingers, 2 joint fingers, 3 joint fingers.

Eventually, I wanted to make little extra bits on
characters: A pouch on their belt, a floppy bit on
their elbow, even some secondary motion on elf
ears. I had everything I needed in my “finger”
component, so I ended up using it for every little
FK bit on many characters.

The “Finger” ended up being the building block of
my rig.

When I came to my current team, I was somewhat
relieved to see that they had done the same thing!
Every FK control on our “modern” rigs is build by a
function called “buildFingerControl”. Even FK
spines, tails, head and neck, all are built with that
function.

Even more basic than a fully-functioning rig
module is how I came to break it down into an
even more basic element: The Triangle.

When I look at potential rig components, I tend to
visualize them as triangles. This allows me to apply
some math to the situation and produce an
accurate solution. Before we get ahead of
ourselves, let’s go over some of the math to get
from here to there.

Let’s talk about Math. Since I went to school for
art, I didn’t have to take many math courses, and I
probably would have forgotten most of it anyway.
So I had to learn most of this by piecing it together
over time.

I’ll be talking about math in how it relates to
character rigging, but much of the math is also
directly applicable to other sub-disciplines of
Technical Art: writing shaders, for instance. What
is Linear Algebra?

Wikipedia says: Linear algebra is the branch of
mathematics concerning vector spaces and linear
mappings between such spaces. It includes the
study of lines, planes, and subspaces, but is also
concerned with properties common to all vector
spaces.

To paraphrase, it is the manipulation of various
mathematical structures that retains the functions
of addition and multiplication

I tend to think of of these “tools” I use on a daily
basis as black boxes: transform matrix, cross and
dot products. I put values in, I get results out.

You can use them even if you don't memorize
underlying math as long as you know how to use
them.

Just like artists who use scripts don't have to know
how to write scripts on their shelf to know which
one to click to produce the desired result.

Some of the mathematical tools I use when solving
those rigging problems are Vectors and Matrices.
What IS a vector?

It is a Direction

It also has length.

Normalizing a vector changes length to ‘1’ but still
points in the same direction, which makes many
calcluations much easier.

But also can be used to represent a location
relative to something else, including origin.

Reversing a vector is pretty easy: We multiply the
vector by -1, which in turn just multiplies each
element of the vector by -1, and the resulting
vector points in the opposite direction.

Adding two vectors gives you a third vector. This is
done simply by adding the indices of each vector in
turn. That vector’s direction is the average of the
direction of the operands. Dividing the result by
two gives you the average of the two operands,
both in direction and length.

Subtracting two vectors is similar, we subtract the
indices of each vector to produce a third vector.*
The result is a mirror of the second vector across
the first vector.*

When we represent points in space as vectors, we

can use subtraction to find a vector between two

points. The destination point minus the origin

point.

We want the vector between these two points.

The “destination” point is at [5,4,3].* The “Origin”

point is at [2,3,1].* The resulting vector that aims

from 2,3,1 to 5,4,3 is 3,1,2.*

The length of a vector can be calculated with the

Pythagorean Theorem.

The distance between two points, can similarly be

computed with this “Euclidean Distance” formula.

Inside the parentheses, we’re just subtracting the

components of each vector.

The DOT product is one of the tools we use on

vectors.

The math behind it is pretty simple: it’s the x’s, y’s,

and z’s of two vectors multiplied, then added

together

The dot product of two normalized vectors returns

a “scalar” value, or float value between -1 and 1.

The dot product of two vectors pointing in the

same direction is 1, pointing in opposite direction

is -1, and two perpendicular vectors’ dot product is

zero. There are values in between as well: the dot

product of vectors gives a similar result as the

cosine of scalars.

The ArcCosine of of the dot product of two

normalized vectors is the ANGLE between the

vectors in radians.

Where DOT products result in a single scalar value,

the CROSS product of two vectors returns a third

vector.

That vector is the “normal” of the plane they

define.

The math behind the cross product isn’t really too

complicated either: It involves multiplying and

subtracting elements of the two input vectors.

Maya uses a “right-handed” coordinate system: if

vector1 goes right and vector2 goes up, the cross

product will come AT you. 3d studio max is also

right-handed, but since it’s Z-Up, X points to the

right, Y points away from you, the cross product Z

will then point up

The dot product of the resulting vector against

both source vectors will be 0, because it will be 90

degrees from either of the two input values.

Finally, we come to the Transformation Matrix.

It’s a scary 4x4 grid of 16 values.

This is how that matrix used to look to me before I

understood it.

Maya will return a matrix as a flat list of 16

numbers, which is just as intimidating.

But what it really is: 4 vectors: The X Axis

The Y Axis

the Z Axis

and the fourth row is the translation as a Vector.

So that red, green, and blue transform manipulator

we’re all familiar with is just a visual

representation of a transformation matrix.

The term “Identity Matrix” refers to a matrix

where the values are aligned to the world

The first vector points toward positive X world

space, the Y vector points in positive Y world

space, Z vector points in positive Z world space,

and the translation is at the world origin, or [0,0,0].

Fourth value in each row is 0, except the

translation row, the fourth element of which is 1.0.

The 4th column is a “hack” to allow translation to

be represented in a matrix.

A Transformation Matrix In World Space describes

an object’s orientation, scale, and position from

origin.

We can alter the Scale of the object by changing

lengths on x,y,z vectors.

We can Skew the object by making x,y,z vectors

non-orthogonal to each other.

We can multiply Matrices.

Matrix multiplication is non-commutative, in other

words A times B doesn’t necessarily equal B times

A because the math involves multiplying the rows

of the first matrix with the columns of the second.

The Inverse of a matrix is the transformation

needed to multiply against a matrix in order to get

an identity result, so the axes are aligned to the

world and the translation is 0.

If B is the child of A, we can multiply the inverse of

A’s world matrix with B’s world matrix to get the

local transformation matrix of B.

We can also change an object’s space to world or

another object’s local space, perform an operation,

and return it to its original space.

Let’s build a matrix.

Here’s some points in space, A,B, and C. A is

currently aligned to the world, but we want to aim

A at B, and use C as the upvector

A’s X axis will be the axis we aim at B, and its Y axis

will be point as much toward C as possible.

First we get the world position for A,B, and C.

We know how to find the vector from A to B: it’s B

minus A.

I don’t know how long that vector is, but we’ll

normalize it so its length is 1, but it’s still pointing

from A toward B.

We get the second vector the same way, C minus

A.

And we normalize that vector also.

Here’s the fun part: we get the third vector by

calculating the cross product of the first two

vectors.

Now aim_x and aim_z are 90 degrees from each

other, and aim_Y and aim_Z are 90 degrees from

each other, aim_x and aim_y aren’t necessarily 90

degrees from each other. So we get an adjusted

aim_Y by crossing aim_Z and aim_X.

We make a new transformation matrix “M” by

combining those three aim vectors and the world

position of A.

This is what the matrix looks like broken down into

individual float values: the X, Y, and Z elements of

each of the X, Y, Z, and translation vectors.

Finally we set the worldmatrix of A to the matrix

we constructed.

If A had a parent P, we would set A’s local matrix

to the inverse of P’s world matrix times M.

Here’s a pretty common operation, calculating the

correct position of an arm’s pole vector control.

Here’s an arm.

we’ll call the shoulder point A, the elbow point B,

and the wrist point C.

AB is the upper arm, and BC is the forearm.

First, let’s get the shoulder-wrist vector by

subtracting: C minus A. Hey look, there’s a

Triangle!

This part is a little tricky: We’re going to project

elbow to the shldr-wrist vector using some dot

product math. That gives us point P along vector

AC.

We make a new vector by subtracting the elbow

position B minus P, and we normalize that vector.

It’s personal preference how far off the elbow we

position the pole vector, but my rule of thumb is

half of the length of the entire arm, or AB plus BC

times 0.5.

Finally, we set the position of the pole vector

control: multiply the normalized PB vector times

the length value we calculated, and add that to the

elbow position B.

Here’s a quick demo of a Pose Space node I wrote
using the dot product to calculate a value
indicating how much a driver object points toward
a list of other objects. Remember, the dot product
of two vectors pointing in the same direction is 1,
so I’m just comparing one of the driver node’s axes
with the normalized vector of the target node’s
position minus the driver’s position.

I’ve given a few examples, but once you start
becoming comfortable with vectors and matrices,
you can build larger and more complicated
systems under the hood of your animation rigs or
whatever else you need mathematical solutions
for.

That’s all I have, thanks.

Any Questions

Here’s a few ways to find the length of a vector in

Python:

1) Using the math module, and the pythagorean

formula

2) In numpy, the “linear algebra” module’s

“norm” function

3) With an In OpenMaya MVector’s length()

function

2 vectors, normalize them, get dot product

cross prod in numpy

import numpy as np

import numpy.linalg as la

normalize = lambda a: np.array(a) / la.norm(a)

v1 = [-3.132, -4.317, 6.369]

v2 = [-6.032, 5.884, 1.618]

n1 = normalize(v1)

n2 = normalize(v2)

numpy.cross(n1,n2)

Web resources for learning more about vectors

and manipulating them…

Khan Academy

https://www.khanacademy.org/math/linear-

algebra/vectors-and-spaces/vectors/v/vector-

introduction-linear-algebra

WolframAlpha

http://www.wolframalpha.com/examples/Algebra.

html

