
Hello!



I’m Richard Katz, Senior Technical Artist  on the 
World of Warcraft team at Blizzard Entertainment 
in Irvine, CA. I’ve been at Blizzard for 3 years, but 
I’ve been a professional Game Developer for over 
20 years. I spent my first 7 years as a 3D Character 
Artist, Animator, and Lead Artist. I’ve spent the 
past 12+ years as Technical Artist specializing in 
Character Rigging and Animation Tools. 

Thanks for coming. This is my second time 
speaking at the Tech Art Boot Camp, the first time 
was in 2015



Not too long ago, I had heard the terms “dot 
product”, “cross product”, “transformation matrix” 
but I didn’t really know what they were or how to 
use them. Only about 6 or 7 years ago, something 
finally clicked and I figured out just enough to get 
myself into trouble. But I thought if I’m just 
figuring this out now, everyone else must already 
have mastered this stuff, right? 

After putting together a python matrix module at 
work, I ran a quick demo and tutorial for my team, 
and realized that even some really smart people I 



work with never really had to deal with matrices 
and vectors that much. They appreciated the way I 
broke it down for them and told me they 
understood it a little bit better after the meeting. 
This talk evolved out of what I put together for 
that demo.



There will be some math, but don’t panic. What I 
want to do is take those ugly lists of numbers, and 
try to show you that you can visualize them as 
pretty arrows and triangles, and that they can 
mean the same thing. If I can figure this stuff out, 
then you can too!

Bend your index finger. There are equations that 
can describe that motion, and how the parts relate 
to each other. It all starts with math.



For some of you, this might be old news, but I hope 
I can try to help some people visualize it in a new 
way



I’m going to take those basic concepts and put 
them together into a couple of example rigging 
applications.



I come from an art background. Some rare artists 
can put a pen to paper and create a fully-formed 
image from their mind through their hand and 
onto the page



But complex tasks usually require one to break a 
problem down into manageable parts. Character 
Rigging is a series of Problems to be solved. Like 
any problem, first we analyze it. Then we break it 
down to smallest practical parts, and solve those 
smaller bits. Finally we put the parts back together.



When teaching figure drawing, an artist learns how 
to break a character into basic primitive shapes: 
Cylinders, Spheres, and Cubes.



When I was building 3D Models, I worked in very 
much the same way, with actual primitive shapes 
that I molded and welded together.



In rigging, I’m similarly putting together building 
blocks: such as an FK Chain or a Limb.



Let me tell you a story. When building rigs for my 
last project, I started with a root control, a hip 
control, a spine, a head, arms, legs.



Then I got to the fingers, and I wanted to make a 
single function that built controls for all 5 fingers. 1 
joint fingers, 2 joint fingers, 3 joint fingers.



Eventually, I wanted to make little extra bits on 
characters: A pouch on their belt, a floppy bit on 
their elbow, even some secondary motion on elf 
ears. I had everything I needed in my “finger” 
component, so I ended up using it for every little 
FK bit on many characters.



The “Finger” ended up being the building block of 
my rig.



When I came to my current team, I was somewhat 
relieved to see that they had done the same thing! 
Every FK control on our “modern” rigs is build by a 
function called “buildFingerControl”. Even FK 
spines, tails, head and neck, all are built with that 
function.



Even more basic than a fully-functioning rig 
module is how I came to break it down into an 
even more basic element: The Triangle.



When I look at potential rig components, I tend to 
visualize them as triangles. This allows me to apply 
some math to the situation and produce an 
accurate solution. Before we get ahead of 
ourselves, let’s go over some of the math to get 
from here to there.



Let’s talk about Math. Since I went to school for 
art, I didn’t have to take many math courses, and I 
probably would have forgotten most of it anyway. 
So I had to learn most of this by piecing it together 
over time. 



I’ll be talking about math in how it relates to 
character rigging, but much of the math is also 
directly applicable to other sub-disciplines of 
Technical Art: writing shaders, for instance. What 
is Linear Algebra?



Wikipedia says: Linear algebra is the branch of 
mathematics concerning vector spaces and linear 
mappings between such spaces. It includes the 
study of lines, planes, and subspaces, but is also 
concerned with properties common to all vector 
spaces.



To paraphrase, it is the manipulation of various 
mathematical structures that retains the functions 
of addition and multiplication



I tend to think of of these “tools” I use on a daily 
basis as black boxes: transform matrix, cross and 
dot products. I put values in, I get results out.



You can use them even if you don't memorize 
underlying math as long as you know how to use 
them.



Just like artists who use scripts don't have to know 
how to write scripts on their shelf to know which 
one to click to produce the desired result.



Some of the mathematical tools I use when solving 
those rigging problems are Vectors and Matrices. 
What IS a vector? 



It is a Direction



It also has length.



Normalizing a vector changes length to ‘1’ but still 
points in the same direction, which makes many 
calcluations much easier.



But also can be used to represent a location 
relative to something else, including origin.



Reversing a vector is pretty easy: We multiply the 
vector by -1, which in turn just multiplies each 
element of the vector by -1, and the resulting 
vector points in the opposite direction.



Adding two vectors gives you a third vector. This is 
done simply by adding the indices of each vector in 
turn. That vector’s direction is the average of the 
direction of the operands. Dividing the result by 
two gives you the average of the two operands, 
both in direction and length.



Subtracting two vectors is similar, we subtract the 
indices of each vector to produce a third vector.* 
The result is a mirror of the second vector across 
the first vector.*



When we represent points in space as vectors, we 

can use subtraction to find a vector between two 

points. The destination point minus the origin 

point.



We want the vector between these two points. 

The “destination” point is at [5,4,3].* The “Origin” 

point is at [2,3,1].* The resulting vector that aims 

from 2,3,1 to 5,4,3 is 3,1,2.*



The length of a vector can be calculated with the 

Pythagorean Theorem.



The distance between two points, can similarly be 

computed with this “Euclidean Distance” formula. 

Inside the parentheses, we’re just subtracting the 

components of each vector.



The DOT product is one of the tools we use on 

vectors.



The math behind it is pretty simple: it’s the x’s, y’s, 

and z’s of two vectors multiplied, then added 

together



The dot product of two normalized vectors returns 

a “scalar” value, or float value between -1 and 1.



The dot product of two vectors pointing in the 

same direction is 1, pointing in opposite direction 

is -1, and two perpendicular vectors’ dot product is 

zero. There are values in between as well: the dot 

product of vectors gives a similar result as the 

cosine of scalars.



The ArcCosine of of the dot product of two 

normalized vectors is the ANGLE between the 

vectors in radians.



Where DOT products result in a single scalar value, 

the CROSS product of two vectors returns a third 

vector.



That vector is the “normal” of the plane they 

define.



The math behind the cross product isn’t really too 

complicated either: It involves multiplying and 

subtracting elements of the two input vectors.



Maya uses a “right-handed” coordinate system: if 

vector1 goes right and vector2 goes up, the cross 

product will come AT you. 3d studio max is also 

right-handed, but since it’s Z-Up, X points to the 

right, Y points away from you, the cross product Z 

will then point up



The dot product of the resulting vector against 

both source vectors will be 0, because it will be 90 

degrees from either of the two input values.



Finally, we come to the Transformation Matrix.



It’s a scary 4x4 grid of 16 values.



This is how that matrix used to look to me before I 

understood it.



Maya will return a matrix as a flat list of 16 

numbers, which is just as intimidating.



But what it really is: 4 vectors: The X Axis



The Y Axis



the Z Axis



and the fourth row is the translation as a Vector. 

So that red, green, and blue transform manipulator 

we’re all familiar with is just a visual 

representation of a transformation matrix.



The term “Identity Matrix” refers to a matrix 

where the values are aligned to the world



The first vector points toward positive X world 

space, the Y vector points in positive Y world 

space, Z vector points in positive Z world space, 

and the translation is at the world origin, or [0,0,0].



Fourth value in each row is 0, except the 

translation row, the fourth element of which is 1.0.



The 4th column is a “hack” to allow translation to 

be represented in a matrix.



A Transformation Matrix In World Space describes 

an object’s orientation, scale, and position from 

origin.



We can alter the Scale of the object by changing 

lengths on x,y,z vectors.



We can Skew the object by making x,y,z vectors 

non-orthogonal to each other.



We can multiply Matrices.



Matrix multiplication is non-commutative, in other 

words A times B doesn’t necessarily equal B times 

A because the math involves multiplying the rows 

of the first matrix with the columns of the second.



The Inverse of a matrix is the transformation 

needed to multiply against a matrix in order to get 

an identity result, so the axes are aligned to the 

world and the translation is 0.



If B is the child of A, we can multiply the inverse of 

A’s world matrix with B’s world matrix to get the 

local transformation matrix of B.



We can also change an object’s space to world or 

another object’s local space, perform an operation, 

and return it to its original space.



Let’s build a matrix.



Here’s some points in space, A,B, and C. A is 

currently aligned to the world, but we want to aim 

A at B, and use C as the upvector



A’s X axis will be the axis we aim at B, and its Y axis 

will be point as much toward C as possible.



First we get the world position for A,B, and C.



We know how to find the vector from A to B: it’s B 

minus A.



I don’t know how long that vector is, but we’ll 

normalize it so its length is 1, but it’s still pointing 

from A toward B.



We get the second vector the same way, C minus 

A.



And we normalize that vector also.



Here’s the fun part: we get the third vector by 

calculating the cross product of the first two 

vectors.



Now aim_x and aim_z are 90 degrees from each 

other, and aim_Y and aim_Z are 90 degrees from 

each other, aim_x and aim_y aren’t necessarily 90 

degrees from each other. So we get an adjusted 

aim_Y by crossing aim_Z and aim_X.



We make a new transformation matrix “M” by 

combining those three aim vectors and the world 

position of A.



This is what the matrix looks like broken down into 

individual float values: the X, Y, and Z elements of 

each of the X, Y, Z, and translation vectors.



Finally we set the worldmatrix of A to the matrix 

we constructed.



If A had a parent P, we would set A’s local matrix 

to the inverse of P’s world matrix times M.



Here’s a pretty common operation, calculating the 

correct position of an arm’s pole vector control. 

Here’s an arm.



we’ll call the shoulder point A, the elbow point B, 

and the wrist point C.



AB is the upper arm, and BC is the forearm.



First, let’s get the shoulder-wrist vector by 

subtracting: C minus A. Hey look, there’s a 

Triangle!



This part is a little tricky: We’re going to project 

elbow to the shldr-wrist vector using some dot 

product math. That gives us point P along vector 

AC.



We make a new vector by subtracting the elbow 

position B minus P, and we normalize that vector.



It’s personal preference how far off the elbow we 

position the pole vector, but my rule of thumb is 

half of the length of the entire arm, or AB plus BC 

times 0.5.



Finally, we set the position of the pole vector 

control: multiply the normalized PB vector times 

the length value we calculated, and add that to the 

elbow position B.



Here’s a quick demo of a Pose Space node I wrote 
using the dot product to calculate a value 
indicating how much a driver object points toward 
a list of other objects. Remember, the dot product 
of two vectors pointing in the same direction is 1, 
so I’m just comparing one of the driver node’s axes 
with the normalized vector of the target node’s 
position minus the driver’s position.



I’ve given a few examples, but once you start 
becoming comfortable with vectors and matrices, 
you can build larger and more complicated 
systems under the hood of your animation rigs or 
whatever else you need mathematical solutions 
for.



That’s all I have, thanks.



Any Questions





Here’s a few ways to find the length of a vector in 

Python:

1) Using the math module, and the pythagorean 

formula

2) In numpy, the “linear algebra” module’s 

“norm” function

3) With an In OpenMaya MVector’s length() 

function



2 vectors, normalize them, get dot product



cross prod in numpy

import numpy as np

import numpy.linalg as la

normalize = lambda a: np.array(a) / la.norm(a)

v1 = [-3.132, -4.317, 6.369]

v2 = [-6.032, 5.884, 1.618]

n1 = normalize(v1)

n2 = normalize(v2)

numpy.cross(n1,n2)



Web resources for learning more about vectors 

and manipulating them…

Khan Academy 

https://www.khanacademy.org/math/linear-

algebra/vectors-and-spaces/vectors/v/vector-

introduction-linear-algebra

WolframAlpha 

http://www.wolframalpha.com/examples/Algebra.

html


