


Quick intro of myself, and a rundown 
of the talk.

Bob white, Senior Technical Artist at 
Deep Silver Volition.

This is not a tutorial, as there isn't 
nearly enough time to walk through a 
big how-to on the mechanics of 
contributions.



Also these slides will not only be posted 
elsewhere, they are also more headings 
/ talking points. 

So you really shouldn't feel the need to 
stress yourself out with any kind of 
major note taking.

Instead this is more focused on the 
experience, skills, and other random 
intangibles that I've gotten from 
contributing.

Or more simply put. How this helped be 
a better Technical Artist.

With the overall goal being, that 
hopefully one of those positives will 
resonate with you, and at least get you 
to consider volunteering some of your 
time and skill towards making these 
community projects better for everyone.



But before I begin

The major projects I've had the 
opportunity to contribute to.

This is more here to give them a 
shout-out specifically because 
they've let me contribute. 

Plus they are awesome projects and 
just deserve some general props.



I’m pretty sure just about everyone who 
has worked with Maya has at least heard 
about PyMEL, but for those that haven’t, 
it is a library that is bundled with Maya 
that allows you to write more ‘pythonic’ 
code when working with Maya.

wxPython is a destop GUI framework, 
similar to PyQt / PySide.

mGui is the project I’ve put the most 
effort into these last few years, and is an 
excellent little library that aims to make 
writing GUIs in Maya a whole let less 
painful.



So there are a myriad ways that 
people can contribute to projects, 
and this is by no means an 
exhaustive list.

One of the simplest is reporting any 
bugs you find, even if you don’t know 
how to fix them, just letting the 
project know there is an issue helps.

In fact probably half the pymel fixes 
I’ve done over the years have come 



from things I found in the issue tracker.

So I’ve got a couple of examples of 
these, just to give some context on how 
simple they can actually be.



Turns out new features can be rather 
simple, even just adding a single 
function.

This was a request I bumped into on 
the TAO forums, after checking if the 
functionality was already in pymel
(which it wasn’t) I went ahead and 
added it as it was a pretty quick 
tweak.

I believe you can only use this one if 



you’re in 2018 or higher, or backport it 
yourself.



This was one of those instances 
where I had some spare time and 
wanted to write some code.

So I started trolling around in the 
issue tracker, and realized it was a 
pretty simple fix.



So this example, is a bit of lie. This 
isn’t a test I just wrote to help out, 
this was a test that was part of a 
larger feature.

And really this is just a small part of 
it, I couldn’t fit it on the slide.



So how did this all start?

The same way almost all of my TA 
related projects seem to start. I ran 
into a problem, and decided to fix it.

And like many such projects, this 
caused more problems, with 
sometimes rather cumbersome fixes.

This led to me maintaining an 
internal version of pymel with a 



couple of fixes and additions sprinkled 
throughout.

Which turned out to make version 
upgrades all the more annoying, as I’d 
have to merge back in all of my fixes.

So new problem, how do I fix it? By 
submitting the fixes back to the master 
project.

But nope, not allowed to share work 
related code, but at least I wasn’t limited 
on what I could work on at home.

So that became my pattern, hacking on 
projects at home, and when those fixes 
were available, use them at work.



So one of the big reasons I’ve kept 
doing this work, is because I like to 
hope that I’ve helped others other 
there using these libraries.

Even more so when it comes to 
pymel and mGui, because with those, 
I like to think I’ve helped other TAs.

Another part is a bit more selfish, 
because see I’m also a part of these 
communities, and by getting these 



contributions into the main codebase, I 
can continue to use them no matter 
where I end up working. You know, 
unless they ban the use of these 
libraries, which I guess could technically 
happen.

But even more than that, I appreciate 
that others have done a bunch of work 
that I take advantage of, and it just felt 
right to do the same when I had both the 
time and the ability to do so.



Another big reason is because well I 
enjoy writing code, I enjoy solving 
problems, and as previously 
mentioned I enjoy helping others.

Which is probably why I ended up as 
a Technical Artist.

I’m not ashamed to admit that as a 
big nerd I’ve poked around in issue 
trackers looking to fix bugs in these 
projects, just for something fun to 



do.



So one of the reasons I was 
interested in using, and then hacking 
on mGui is because it is built using a 
bunch of python's more magical 
metaprogramming techniques.

The kind of thing I'd bump into in a 
blog post, or a stack overflow 
question, but never really had a need 
to use in my day to day work.

Pymel is built on top of very similar 



components, which is probably why I 
liked poking around in it so much.

But having an actual project that was 
making use of metaclasses, custom 
descriptors, a custom event system, was 
a wonderful way to get some hands on 
knowledge outside of "lets repeat that 
example I found on the web that one 
time".



So this right here, this is why I 
wanted to give this talk. In fact I 
might have mentioned that at the 
start?

Hopefully I wasn't to nervous and 
dove right through it.

But yeah, I feel the work that I've 
done on these projects has been 
invaluable towards my growth as a 
Technical Artist.



Code readability

Working on these projects has given me 
a huge confidence boost when it comes 
to diving into a larger more established 
code base.

Where I'm not just able to find where a 
particular problem point is, but to really 
get a grasp on the surrounding concepts, 
and in some cases get a decent 
understanding not just of HOW 
something was built but WHY it was built 
the way it was.

These skills have become all the more 
important for me these last 9 months 
that I've been with DSVolition, because 
we've got some code that was started 
well over a decade ago, that we're still 
using to this day.

Problem solving



So this harks back to how I got started 
with this mess in the first place. But 
really, deciphering bug reports, finding 
the problem point, and then fixing it?

Totally a huge part of being a TA. 
Sometimes we even do it without the 
bug report.

Communication – Using our usual TA 
communication related skills, but 
mapped over a very different domain.

Instead of in person white-boarding 
session, it was cross time zone 
conversations in an issue tracker.

Instead of meetings, it was a back and 
forth with pull requests.

Sometimes it was a quick conversation 
on the TA slack channel, other times it 
was a random side tangent TAO forums.

Same skills, same concepts, but used 



differently. And because they were used 
differently, I feel immensely more 
comfortable exercising these skills.

So even if my skills haven't improved all 
that much, at least my local confidence 
in them has gotten a decent skill up, 
which is probably how I tricked myself 
into thinking that public speaking was in 
anyway a great idea.

Expanding circle of TAs (networking)



These are two collections of other 
open source projects in our 
community.

There are probably others out there,
but I literally bumped into one of the 
lists while I was wrapping these 
wonderful slides up last week, and it 
felt proper to include them.



So any questions?


