

I’ve worked on 11 projects, 7 as a

technical artist.

My current project is Anthem.

I’ve been on:

Huge efforts that required tons of tech-artists

and tools engineers.

I’ve also been the lone technical artist on a

locked down pipeline.

The reason I wanted to do a talk on this

subject is that I’ve onboarded properly and had

a great experience, and I’ve also onboarded

poorly and struggled.

This talk will expose the things that have

helped me the most.

How many of us primarily work on a

pipeline where the primary language

is

● Python?

● C#

● C++

● How many of you support

pipelines with two languages.

● More than 2?

● Languages I haven’t mentioned?

● Transition to how this pertains to

scope.

How many of us primarily work on a

pipeline where the primary language

is

● Python?

● C#

● C++

● How many of you support

pipelines with two languages.

● More than 2?

● Languages I haven’t mentioned?

● Transition to how this pertains to

scope.

How many of us primarily work on a

pipeline where the primary language

is

● Python?

● C#

● C++

● How many of you support

pipelines with two languages.

● More than 2?

● Languages I haven’t mentioned?

● Transition to how this pertains to

scope.

How many of us primarily work on a

pipeline where the primary language

is

● Python?

● C#

● C++

● How many of you support

pipelines with two languages.

● More than 2?

● Languages I haven’t mentioned?

● Transition to how this pertains to

scope.

Scope:

● First week:

○ get your workstation stood

up, read the onboarding wiki

docs, skimmed the art bible,

now what?

○ It’s time to get a 10K foot

view of what you are up

against. Audit the pipeline

and workflow.

Find Entry Points:

● Start by step-thruing the workflow:

○ push an asset(texture, material,

shader iteration, geometry, vfx

etc) through the creation phase

pipeline as a content creator

would do.

Start contributing by debugging:

● Debugging is like taking a dime tour

through the pipeline.

Content validation:

● Unpacking the content validation

system, or establishing one is the

next most efficient way to learn the

codebase after debugging. Cuz this

is all the I/O (or should be)

As you step-thru through the workflows

initially, run the pipeline code in debug

mode. Set breakpoints in your exporter

code and see the different phases the

data goes through as it makes it way in-

game.

● Keep notes through all of this

exploration, because we’ll use them

later to make flow charts, tutorials

and wiki docs for the team (and

yourself).

● All the best systems involve user

input. You should be the first

user you meet. Try things out

right away as a content creator.

Take exhaustive notes, more on

this later.

● Now that you have test driven the

workflow and pipeline, record a

desktop video with camtasia or

similar desktop capture utility.

○ Preferably by/with an artist who

is familiar with the process (for

your subsequent runs).

○ Have the artist drive, and you ask

questions, or if they have time,

you drive and ask them

questions.

○ Ensure that you have a decent

framerate with sound.

○ This isn’t a tutorial, quality isn’t

paramount. It’s a snapshot of

how things work so that you can

rewatch it and have a known

working instance.

○ Talk your way through it so that

when you watch it later you have

some context.

○ Keep notes of observations,

opportunities for automation.

○ This is the best time to capture

your own untainted observations.

You won’t get a 2nd chance at

your first pass impressions, and

capturing them is so valuable.

This is gold.

If your team has a coding standard,
chances are good they are doing
code reviews.

○ This means your work will be
scrutinized, and your
adherence to this standard
will be a part of that.

○ It’s up to you to gauge how
closely and how many of
these standards are
realistically followed.

Modernizing:
● If code doesn’t meet the standard,

your team will probably have a
modernization plan. If not, push for
one.

● My policy is to modernize code
modules or classes that that I’m bug
fixing or involved in a feature
request.

○ Sometimes this rabbit hole can
distract you from your mission of
onboarding.

○ Digging deeper than necessary to
responsibly fix or augment is not
the goal at this phase of
onboarding.

○ In this case I write Todo’s in
comments in the code, and make
personal notes to go back later
and address.

Establishing a standard and style:
● Establishing a coding standard isn’t a

simple task. Luckily, there are great
resources.

○ The .Net framework has great
examples for C#

○ pep8 for python.
● Javascript is all over the map.

● The most important thing is to make
a choice and be consistent.

● Even consistently mediocre is
better than the wild west hodge-
podge of different styles.

● Tread lightly, not everyone wants to
adhere to this concept.

● You must get buy-in before you
start editing code you didn’t
establish.

● This can be as much a cultural
battle as it is one of labor.

Find a mentor:
● If this is your first time

establishing or majorly
refactoring a code standard, seek
advice.

● Find a mentor. Preferably

someone who is on your project,
or at your studio.

● They can help you gauge the
scope and cadence of these
changes you’d like to make.

● As soon as my preliminary
explorations of the workflow are
complete, I like to jump in and
start fixing pipeline and workflow
bugs as soon as possible.

● Bug fixing usually isn’t fun,
exciting work. But it’s one of the
best ways to learn a new pipeline.

● This does many important things
for you as a newb:

○ You start making meaningful

contributions with your first few
tasks.

○ Bugs can be quick wins and give
you confidence, sea legs.

○ Bugs expose where the pipeline is
weak. This is where you should
be focusing your efforts, or, at
least it should lead to them.

○ Opportunity to leave ‘todo:’
comments in your code. More on
this later.

○ Gets you interfacing with the
content creators: your customers.
You are there for them. More on
this later.

● This is why it’s important to stay
aware of bugs in all the systems you
work in.

○ Even if you won’t be fixing these
bugs,

○ They might be related to bugs
you ‘are’ fixing, or will soon
address.

○ Each new issue is a vertical slice

through the pipeline, an
opportunity to see how something
works.

○ Think of it as a haphazard tour
through the codebase.

● The reason I advocate these methods
for learning your codebase, workflow
and pipeline, is that unfocused
learning is prone to some issues:

○ If you don’t have an actionable
reason to review technical things
like source code, then it’s much
easier to forget what you’ve
learned.

■ Retention needs context.
Association and repetition
helps us with long-term
recollection. This is the
association part of that
equation.

○ Bugs have built-in endpoint -
when the bug is fixed.

■ This is important because
there is always more work you

can do,
● more things to explore,
● more code to refactor

■ It’s your job to scope this
properly, more on this later.

Reproducing bugs:
● I’ve talked about spending too

much time, and diving too deep
too early, focusing on bugs and
step-thru-thru’s to explore the
codebase and workflow
environment.

○ But the opposite is true too,
you need to slow down and
reproduce your bugs carefully.
It’s very easy to make
assumptions about what’s

wrong when you are new to
things. We’ll review debugging
principles in the next slide.

○ Even if you have a QA
department verifying each bug,
reproduce it yourself.

○ Even if you have already tread
this part of the pipeline, do it
again.

○ This speaks to the other part of
recollection: repetition.

Understand everything before you
edit/add:

● Once I’m in the code and I’ve found
where I need to implement my bug-
fix, I still make sure to read the
classes and/or modules in their
entirety, beyond what is needed for
the fix.

● If there are data-structures I haven’t
seen I make sure I understand their
I/O and how they are referenced
throughout the codebase, extra
thoroughly if I plan on changing

them.

Building a baseline of understanding of
all the systems you work in will have to
happen eventually.

● Building this general familiarity of
each system you are in speeds up
the next related bug fix. You might
find low-hanging fruit while you do
this.

○ This is a stark difference than
fixing code you have written
recently or become very familiar
with. You know your way around,
you have some sense of scope.

○ Now you are doing this from
scratch, so you cast a wider net
when diving into a bug.

○ Gauging how wide to cast your
net comes with experience. None
of this is wasted time if it’s done
with the correct mindset.

● Bug fixing also allows you to
interface with your team. Unblocking

them is a great way to bond with
your teammates, you’re the new
hero!

● Okay this is the last slide on
debugging, but it’s an important
one. All the best lessons of
debugging I learned by following
this book.

○ Debugging: The 9

Indispensable Rules for

Finding Even the Most

Elusive Software and

Hardware Problems

Paperback – November 5,

2006

● Unpacking all these rules is too much

for a 30 minute talk. But understand

that they are vital to solving bugs

effectively and many of the principals

I’m speaking of were learned or

crystallized after reading this book.

● If you try and follow these rules while

unpacking the pipeline codebase and

the workflows, you’ll be learning

them in the best way that you can.

● Eventually you’ll do moire than fix
one-off bugs:

● extend a system or add a new
feature,

● fixing a time-consuming bug with
validation.

● he temptation could arize to
refactor everything, or just
append a new class to implement
your change. First try and
squeeze this change into an
existing system.

○ This is good for so many reasons,
but the ones pertinent to this
topic:

■ Forces you to understand
what is already written.

■ Appending new blocks of code
could reproduce procedures
already completed somewhere
else.

● This fragments and/or
duplicates functionality.

■ Forces you to adhere to a
different design pattern than
one you might have chosen.
That’s a learning opportunity.

■ This is not to say that
appending or rewriting is
always 2nd choice, but when
you are learning a new
codebase you’ll learn more
about onboarding when you
extend before append.

■ Features in related systems
usually have data structures
and wrappers you can

leverage. These are great
entry points or resources for
your work. Learn them, use
them.

● Content creation validation refers
to procedures that filter content
before it enters the pipeline. It
ensures that the downstream
procedures have all the data they
need to complete.

● It is one of the pillar issues I
always address early when
learning a new pipeline.

○ Validation gives you a
thorough understanding of
your I/O (inputs and outputs)

required by your pipeline.
○ Once validation passes output,

you know you have a minimum
viable product. Everything else
speaks to usability, structure,
efficiency, and readability, but
you can’t have success without
valid I/O.

○ I always start at the end.
Establish acceptance criteria, and
then work backwards all the way
to user input.

● Like our debugging explorations, we
want to understand the I/O systems
in their entirety when interacting with
them.

○ I/O junctions are the gateway
between data transformations.
This is the best point to validate.

○ We want to take advantage of the
context validation provides, and
learn as much as we can while we
make our validation contributions.

○ Make sure you explore all paths
the input will take once it’s been

validated at that specific stage of
the pipeline. (diagram)

■ If there are multiple
references to the data after
this point, you could break
something if you change data
structures.

● This is the biggest sticking
point for validation: Don’t
validate one procedure by
changing a data structure
and in the process break
another.

● Understand how data is
referenced and validate
accordingly.

● Starting validation from scratch is my favorite

part of this process. You get to dig into your

pipeline and really learn it.

● Validation sells itself. More validation almost

always translates to fewer bugs or more

efficiency.

● Bug fixing with validation means your first

investigations are at least partially directed

because you know what not to look for.

● Entry points for validation is usually a junction

point in your pipeline. It’s a great location to

place additions to the codebase, because it’s

either the start or stop of ‘something’.

● A well validated pipeline usually translates to

handled exceptions for the content creators.

This does many things:

○ If they didn’t deliver assets in the right format,

we can tell them with a dialog or log entry.

○ It shows tech-art competence with the

workflows and pipelines we maintain.

○ Preserves/restores the artists confidence that

we’ve stepped through this process and

made sure everything works.

○ Artists with good validation learn the pipeline

faster/better. They have more inf about

validation failures and can help themselves

through some problems.

● Chances are: workflows and
pipeline stakeholders are the
veteran content creators. When
you start working on a bug, or a
feature request, it’s always a
good idea to find out the history
of the bug/request. Old school
artists will know. Use Level
Scanner feature example.

● The code can’t tell you which

features are being actively used
(unless there is code for that…). But
old schoolers show you best
practices.

● There should be a great incentive for
you to learn the systems the artists
spend their most time using. This is
where tech-art should focus, because
the best places for optimization see
high traffic.

● Old school artists know which
systems are dead or dying, and why.
This can help guide you towards code
rot.

○ Allowing unused code to sit in
your codebase is a bad idea. If
it’s not being used, fix it so it’s
usable or get rid of it.

○ The longer this kind of code
hangs about, the greater the
chances it’ll fester into a problem.

● They know:
○ They often know the fastest

way to do something
■ Or the most fool-proof

way.

○ Hold the secret tricks that
circumvent unreported bugs.

○ These are the suggestions and
awareness that often lead to
the best project-specific
performance optimizations.

■ Junior developers often know
the latest and greatest
techniques. Old school artists
are aware of how-to push the
game engine/assets to their
limits.

○ They often know where the non-
creative iterative cycles are. The
ones you need to automate.

○ veteran artists can tell you ‘if I
only had “X, I could make Y”.
Newer artists might not know
what is possible because they just
haven’t had the time to dig into
the cracks of the workflow. The
old schoolers have probably done
this.

● There was a by Fred Fielder and
Joe Garcia that addresses how
stress relates to a leaders
tendency towards experience vs.
intelligence.

● My takeaway from that is to learn
your pipeline and workflow as
thoroughly as you can, because
eventually you’ll be point-person
on a bug or feature during a high-
stress period of production. You’ll

be applying all this experience in
these high stress moments.

● Grinding away at a bug or a feature
implementation can cause stress
when we need it least, when we need
to think creatively.

○ This is where I usually take a
moment to gain perspective.

○ I ask for help after 1 hour of
grinding. Anymore and I’ll start
sacrificing cognitive resources.
The lower they get, the less
effective of a thinker I’ll be.

○ Experience helps structure
thoughts and unpack complexity.

● Cognitive resource theory is a very
interesting read, and I urge you all to
understand the conclusions and apply
they to your work.

