

G
e

n
e

ra
ti

ve
 A

rt
 —

M
a

d
e

 w
it

h
 U

n
it

y

Math for Game Developers
Inside Neural Networks

Michael Buttner, Unity Labs
Principal Research Engineer
michaelbu@unity3d.com

Image descriptions

3

[Karpathy and Fei-Fei 2015]

Man in black shirt is playing guitar. Construction worker in orange
safety vest is working on road.

Two young girls are playing
with lego toy.

Boy is doing backflip on
wakeboard.

Style transfer

4

[Gatys, Leon A and Ecker, Alexander S and Bethge, Matthias 2015]

=+

Image enhancement

5

https://github.com/alexjc/neural-enhance

6

Beyond images and classification

7

Vast amount of neural network applications are “offline”

Majority of examples focus on image-related problems

NN inference is usually implemented inefficiently

— Neural Networks in performance critical code

— Inference and Training without frameworks

— Data-oriented design

Data oriented NN Inference

8

𝑥1

𝑥2

𝑥3

Input

𝑊0

𝑊1

𝑊2

𝑎1,2

𝑎1,3

𝑎1,4

𝑎1,5

𝑎1,1

Hidden Layer

𝐿0

𝑎2,2

𝑎2,3

𝑎2,4

𝑎2,5

𝑎2,1

Hidden Layer

𝐿1

𝑎1,1

𝑎1,1

Output

𝐿2

Multilayer Perceptron (MLP) – DenseLayer - FullyConnectedLayer

Optimize data layout for memory access patterns

Continuous memory access to avoid cache misses

Minimize memory access

No dynamic memory allocation

128-bit SSE Load & Store instructions

𝑎𝑙 = 𝜎 𝑊𝑙𝑎𝑙−1 + 𝑏𝑙

ො𝑦 = 𝜎 𝑊2 𝜎 𝑊1 + 𝜎 𝑊0𝑥 + 𝑏0 𝑏1 + 𝑏2

Forward Pass | Neural Network Inference

Instruction Timings

9

SQRTSS/PS 9-10

VSQRTPS 9-10

SQRTSD/PD 14-15

VSQRTPD 14-15

RSQRTSS/PS 5

VRSQRTPS 5

FSIN 50-170

FCOS 50-115

FSINCOS 60-120

FPTAN ~90

FPATAN 50-160

AMD Ryzen

By Agner Fog. Technical University of Denmark.
Copyright © 1996 – 2018. Last updated 2018-09-15.https://www.agner.org/optimize/instruction_tables.pdf

Instruction Latency Instruction Latency

Memory Caching

10

CPU

L1 D$

L1 I$

L2
(small)

Main RAM
(large)

200+ cycles

20+ cycles

3 cycles

Registers

CppCon 2014: Mike Acton "Data-Oriented Design and C++"

Data Source Latency

11

L1

L2

RAM

CppCon 2014: Mike Acton "Data-Oriented Design and C++"

DirectX Math

12

“An all inline SIMD C++ linear algebra library for use in games and graphics apps”

https://github.com/Microsoft/DirectXMath

Memory types

Register types
XMLoad/StoreFloat4A
map directly to _mm_load_ps
and _mm_store_ps

Alignment & Padding

13

Row major layout & 128-bit padding for vectors and matrices

𝑦 = 𝑊𝑥 =∗

𝑊 𝑥 𝑦

∗ =

𝑊 𝑥 𝑦

XMLoadFloat4A XMStoreFloat4A

∗ =

𝑊 𝑥 𝑦

16 byte aligned

MatrixMN & VectorN

14

Matrix and Vector reference memory

Decoupled memory management

MemoryBlocks & MemoryRequirements

15

— Calculate required memory

— Allocate memory once

— In-place construct objects

Same strategy as for memory-ready assets

Maximize cache coherence

Minimize memory allocations

Tightly control memory alignment

M
e
m
o
r
y
B
l
o
c
k

𝑊

𝑥

𝑦

𝑊

∗

𝑥

=

𝑦

Ptr

Ptr

Ptr

Stack allocation

16

Reasonably sized memory blocks can be allocated on the stack

sub rsp, <size>

Requires tight control of scopes

void* Allocate(size_t size) { return alloca(size); }

𝑊

∗

𝑥

=

𝑦

SSE MatMul

17

∗ =∗ = x x x x

y y y y

z z z z

w w w w

Composite operations

18

All this pain just for a simple matrix multiplication?

“Layer Fusion” | Composite operations

ො𝑦 = 𝜎 𝑊𝑥 + 𝑏 can be combined

into a single operation

Reduce memory access & hide memory latency

𝜎 𝑊𝑥 + 𝑏

Temporary results

𝑢 = 𝑊𝑥
𝑣 = 𝑢 + 𝑏
𝑠 = 𝜎 𝑣

SSE FullyConnected Layer

19

Performance gain

20

Performance gain depends on network

architecture and feature vector size

Complex architectures gain the most

— Experiment with naïve implementation

— Lock down architecture

— Side-by-side implementation

— Profile and optimize

Complex manifold example

— Feature vectors size 400+ values

— From 3.0 ms to 0.7 ms (76% gain)

𝑥 𝑦

𝜃

𝑁 𝑥 = 𝜎 𝑊𝑥 + 𝑏

ො𝑦 = 𝑁2 𝑁1 𝑁0 𝑥

𝐿 =
1

2
(ො𝑦 − 𝑦))2

Neural Network Training

21

The goal is to adjust all 𝑊𝑙 , 𝑏𝑙 such that for any training sample 𝑥, 𝑦

the loss 𝐿 becomes 0

𝜕𝐿

𝜕𝑊𝑙
,
𝜕𝐿

𝜕𝑏𝑙
tell us how to adjust 𝑊𝑙 , 𝑏𝑙 for any given 𝑥, 𝑦

Loss function can include additional constraints

For example maintain unit quaternion property

initialize(net)

for epoch = 1,… ,𝐾 do

for batch = 1,… , #data/b do

x, y ← randomly draw b samples

z ← forward(net, x)

l ← loss(z, y)

grad ← backward(l)

update(net, grad)

end for

end for

Evaluate Loss

Improve neural network parameters

Calculate gradients

Stopping criteria == true
Stopping criteria == false

Neural Network Training

22

Calculate Gradients

23

Michael Nielsen
http://neuralnetworksanddeeplearning.com/chap2.html

Sully Chen
https://www.youtube.com/watch?v=gl3lfL-g5mA

B
a
c
k
w
a
r
d

P
a
s
s

𝛿𝐿 = 𝑎𝐿 − 𝑦 ⊙ 𝜎′𝑧𝐿

𝛿𝑙 = 𝑤𝑙+1 𝑇
𝛿𝑙+1 ⊙𝜎′𝑧𝑙

𝜕𝐶

𝜕𝑏𝑙
= 𝛿𝑙

F
o
r
w
a
r
d

P
a
s
s

𝜕𝐶

𝜕𝑤𝑙
= 𝑎𝑙−1𝛿𝑙

http://neuralnetworksanddeeplearning.com/chap2.html
https://www.youtube.com/watch?v=gl3lfL-g5mA

Beyond Backpropagation

24

What if we are not using a simple MLP network?

What if we want to experiment with

different architectures?

𝑦 𝜃 = 𝜎 𝑢 𝜃 𝑥 + 𝑣 𝜃

𝑢 𝜃 =…

𝑣 𝜃 =…

Backpropagation is just a special case of reverse-mode

automatic differentiation, applied to a neural network

“AD allows exact and efficient calculation of derivatives,

by systematically invoking the chain rule of calculus at

the elementary operator level during program execution”

Neural networks are more than just a series of “layers”

Algorithmic Differentiation

25

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

Expressions can be divided into elementary operations

Computational graphs are a subset of abstract syntax trees

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Forward primal trace calculates rate of change of 𝑓 with respect to one of its inputs

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

ሶ𝑓 𝑥1, 𝑥2 = ሶ𝑤1

ሶ𝑤1 = ሶ𝑤2 + ሶ𝑤3

ሶ𝑤2 = −sin(𝑤5) ሶ𝑤5

ሶ𝑤3 = ሶ𝑤4𝑤5 + ሶ𝑤5𝑤4

ሶ𝑤4 = 𝑒𝑤6 ሶ𝑤6

ሶ𝑤5 = seed ∈ 0,1

ሶ𝑤6 = seed ∈ 0,1

Forward Primal Trace

Adjoint Mathematics

26

We call 𝑓𝑖 the result of the operation on 𝑛𝑖 , we denote 𝑓 = 𝑓𝑁 the

final result on the op node 𝑛𝑁 and 𝐶𝑖 the set of arguments to

node 𝑛𝑖.

The adjoint 𝑎𝑖 of the result 𝑓𝑖 on node 𝑛𝑖 is the partial derivative

of the final result f = 𝑓𝑁 to 𝑓𝑖

𝑎𝑖 =
𝑑𝑓

𝑑𝑓𝑖

Since obviously 𝑎𝑁 =
𝜕𝑎𝑁

𝜕𝑎𝑁
= 1 and directly from the

derivative chain rule, the fundamental adjoint equation is:

𝑎𝑗 = ෍

𝑖/𝑛𝑗∈𝐶𝑖

𝜕𝑓𝑖
𝜕𝑓𝑗

𝑎𝑖

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

27

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 0ഥ𝑤2 = 0

ഥ𝑤5 = 0 ഥ𝑤4 = 0

ഥ𝑤6 = 0

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

28

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = 0 ഥ𝑤4 = 0

ഥ𝑤6 = 0

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

29

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = −0.91 ഥ𝑤4 = 0

ഥ𝑤6 = 0

𝜕𝑤2

𝜕𝑤5
ഥ𝑤2 = −sin(𝑤5) ∗ 1 = −0.91

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

30

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = −0.91 ഥ𝑤4 = 0

ഥ𝑤6 = 0

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

31

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = 19.19 ഥ𝑤4 = 2

ഥ𝑤6 = 0

𝜕𝑤3

𝜕𝑤5
ഥ𝑤3 = ഥ𝑤3 ∗ 𝑤4 = 1 ∗ 𝑒3 = 1 ∗ 20.1

𝜕𝑤3

𝜕𝑤4
ഥ𝑤3 = ഥ𝑤3 ∗ 𝑤5 = 1 ∗ 2 = 2

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

32

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = 19.19 ഥ𝑤4 = 2

ഥ𝑤6 = 40.17

𝜕𝑤4

𝜕𝑤6
ഥ𝑤4 = ഥ𝑤4 ∗ 𝑤4 = 2 ∗ 𝑒3 = 40.17

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

33

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = 19.19 ഥ𝑤4 = 2

ഥ𝑤6 = 40.17

𝑓 𝑥1, 𝑥2 = cos(𝑥1) + 𝑥1 exp(𝑥2)

𝑓 𝑥1, 𝑥2 = 𝑤1

𝑤1 = 𝑤2 + 𝑤3

𝑤2 = cos(𝑤5)

𝑤3 = 𝑤4𝑤5

𝑤4 = 𝑒𝑤6

𝑤5 = 𝑥1
𝑤6 = 𝑥2

Let 𝑥1 = 2 and 𝑥2 = 3,

then
𝜕𝑓

𝜕𝑥1
= 19.19 and

𝜕𝑓

𝜕𝑥2
= 40.17

𝜕𝑓

𝜕𝑥1
= −sin(𝑥1) + 𝑒𝑥2

𝜕𝑓

𝜕𝑥2
= 𝑒𝑥2𝑥1

Reverse Mode Differentiation

34

𝑥2

𝑒𝑥𝑝

+

𝑐𝑜𝑠 ∗

𝑥1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑓
= 1

𝑤2

𝑤1

𝑤3

𝑤5 𝑤4

𝑤6

ഥ𝑤3 = 1ഥ𝑤2 = 1

ഥ𝑤5 = 19.19 ഥ𝑤4 = 2

ഥ𝑤6 = 40.17

Reverse adjoint trace calculates rate of change of

𝑓 with respect to all of its inputs

Evaluating 𝛻𝑓(𝑥) is as fast evaluating 𝑓(𝑥)

Forward pass evaluates the expression

Reverse pass evaluates 𝛻𝑓(𝑥)

AAD allows us to use arbitrary control structures

like loops or branches, intermediate variables and

functions

Data-oriented design & SSE

Algorithmic Adjoint Differentiation

35

36

Feature vectors size 360 values

Multiple hidden layers & 1d Convolution

From 0.5 ms to 0.1 ms (~80% gain)

~70.000 training samples

Stochastic gradient descent

Single training update < 0.3 ms

Single epoch ~20 seconds

No framework dependencies

37

Q & A
Michael Buttner, Unity Labs
Principal Research Engineer
michaelbu@unity3d.com

Algorithmic Adjoint Differentiation

38

