
How we feeling GDC?

1

Metanodes!!!!
Not great at elegant or concise subtitles so welcome to,
Metanodes: The Dual Power of Metanodes in Maya!
Airhorn

2

Senior Technical Artist @ ArenaNet
Developing our next rigging system

andrewchristophersen@gmail.com

@def_tech_andrew

Andrew on tech-artists.slack.com

#GDC19

I’m Andrew
Senior Technical Artist at ArenaNet
We make Guild Wars
I’ve been developing our componentized rigging system.

3

#GDC19

Started in 2007 at GPG as an animator
Semi technical building rigs with third party tools

4

#GDC19

Puppetshop
Biped rawr Quaternions
CAT infinity
Lots of solid features
Blackbox rig solutions make it hard to solve systemic issues

5

#GDC19

I’m going to switch to Maya
Make my own rigs and they will be amazing
Turns out it takes awhile
Time to learn Python and make an auto-rigger

6

#GDC19

We shipped a VR game
It worked, but I tracked no data in the scene.
Time for version 2.0 and this time lets manage the data

SEG; One of my inspirations

7

#GDC19

2015 GDC presentation Tools Based Rigging in Bungie’s Destiny
David Hunt and Forrest Söderlind
Half way through a 10 minute segment
Coding Rig Components in Python
Starting to build it myself, but I couldn't get over some initial hurdles

SEG; How did I figure it out? I went to work with people smarter than me.

8

Be the dumbest person on your team.
#GDC19

Can’t recommend being with smart people enough.
I got a job at ArenaNet but you could also hire people.

SEG; Working with smart people is the best way to better myself.

9

#GDC19

It’s worked in my career.

10

#GDC19

And, in my marriage.

11

#GDC19

Getting to ArenaNet gave me access to very talented technical artists
Examples from the team; Tim’s RBF solvers. Dan’s MoCap pipeline. Austin’s Maya API
libraries
And whole codebase of great ideas, one being Metanodes
Credit Kyle Mistlin-Rude

SEG; Not just talk, I want to leave you with some code.

12

Repository

#GDC19

github.com/arenanet/metanode

meta
▪ __init__.py
▪ config.py
▪ core.py
▪ manager.py
▪ examples

▪ __init__.py
▪ actor.py
▪ rig.py
▪ skeleton.py

Everything you need up on ArenaNet Github
I’ve built a generic version of our Metanode classes
Conformed it to PEP8
Set of example modules
Encourage forking the depot and exploring other ideas

SEG; Lets get started

13

#GDC19

Data in Maya

My experience is half of technical art is sheepherding data from one place to
another

14

Game Art
Pipelines and Data

#GDC19

• There’s a lot of data

• It’s in a bunch of different formats

• Any structure we have changes tomorrow

So much data we store in our Maya pipeline.
Data specific to the pipeline we’ve developed

It could be dumps of JSON, transforms, rig definitions, joint mappings, scene state
flags

As the pipeline develops or other teams make requests, that data needs to evolve

15

Magic Naming Schemes

Less-Optimal Structures

#GDC19

Custom Attributes Namespace Madness

There are many less optimal ways to store data
I’ve relied on some of these structures in the past but found drawbacks later
The decade old GW2 pipeline had some of these data schemes

Naming schemes get rigid structures in place that can be hard to adapt later
Examples; _LOD0

Custom Attributes great at storing data but offer no functionality

Namespaces offer convenient buckets but overlap can be tricky

16

Actor Example

#GDC19

First image that comes up when searching Actor in Google. Appropriate
Actor is our term for asset management
It needs to track export assets and any supplemental data
Open-ended enough to append new asset types.
Feature rich to support complex relationships like LODs

SEG; But, there is a better way.

17

Solution

#GDC19

How Metanode solves our problems.

18

The Pitch

#GDC19

A unified structure for data in Maya that
is versatile enough for all our needs.

Skeleton Poses

Animation Sequences

Rig Structure

Asset Export Settings

Physics Values

Etcetera

Centralized system for data
Quick to setup for new uses
General enough for a variety of applications.

Examples

19

Concept

#GDC19

• Maya network node
with attributes that
store the data.

What do I mean when I say Metanode.
Foundational is a Maya Network node that will remain persistent in the scene.
Node is appended attributes to store data using the variety of Maya’s attribute
types.

SEG; Now for the Python.

20

Concept

#GDC19

• Maya network node
with attributes that
store the data.

• Wrapped in Python
class that inherits from
the base Metanode
class.

• All complex behaviors
built into the class.

To enhance this node we wrap it in a Python class.
Inherits from a base definition that sets up conventions for access.
Creating a natural interface for our data.

The class also houses any complex behaviors we need for parsing data.
Give example of saving and setting skeleton pose data.
Those functions can be centralized to the object they operate on and not in a
random library.

21

Why a Network Node?

#GDC19

• Minimalist node with few attributes

• Works without plug-ins

• Very easy to stand-up new nodes

Drawbacks

• Attributes describing identity are missing at
creation. This became a problem when we
started leveraging the add node callback.

Why a network node?
Simple node without many attributes.
Network node is a non-DAG node so it stays hidden in the scene.

The scene can be opened in any environment without importing your plugins.

It is very fast to create new classes of Metanodes with no need for a new node.

Drawbacks can be without or defining attributes at instantiation callbacks can get
confused when we implement our signal system.

22

Structure

#GDC19

• Base Metanode class
that acts as an interface
to our network nodes.

Next three sections we will cover the most important Python objects for the system.
First up is the base Metanode class that holds and edits our scene nodes.

23

Structure

#GDC19

• Base Metanode class
that acts as an interface
to our network nodes.

• Metanode Register
holds calls for every
imported Metanode.

Next we’ll talk about the Register and how we track all the Metanode classes the
team creates.

24

Structure

#GDC19

• Base Metanode class
that acts as an interface
to our network nodes.

• Metanode Register
holds calls for every
imported Metanode.

• Metanode Manager
maintains node
integrity.

Finally we’ll review the Manager and how we keep nodes in our scenes valid.

SEG; I’m excited, let’s get started.

25

Hi Bungie!

Metanode

#GDC19

The dawn of the Metanode
This is my view at work.
I go through many complex and arcane steps brewing my perfect cup of coffee in the
morning and then wave at Bungie.

SEG; Settle in for an exciting day of data management.

26

Metanode

#GDC19

The Metanode is our Python class for interacting
with data on the network node.

As mentioned, Metanode is our Python class for wrapping the Maya network node.
They work in collaboration, the network node storing data and the Metanode
defines interface to data.
Example; Actor node

SEG; And we make one with the create() call

27

#GDC19

It’s a classmethod that generates the metanode, pass in name

Here we create the network node

adds the appropriate attributes from class dictionaries

returns it wrapped in the class.

SEG; Node attributes defined in the class, come in 3 major types.

28

Core Attributes

#GDC19

META_TYPE

• Fully qualified path to
Metanode class that
created this node

META_VERSION

• Version of the
Metanode when node
was created or updated

LINEAL_VERSION

• Class lineage versions
as sum

Core attributes are the only attrs defined on the base class.
They are the identifying information for the Metanode class that created them.
Call returns a dictionary, keys are names and values are attribute arguments for the
attribute type.
Types of attributes as examples.
They are created and values are set and locked.

The meta_type is the path to the python class used to wrap this node.

Meta version is the last iteration of the class this node has been updated to.
Some changes don’t require a version change but updating one of the attribute lists
usually does.

Lineal version is the sum of the Method Resolution Order.
If there is a change at any point in the class inheritance this integer advances.

29

Class and Dynamic
Attributes

#GDC19

Class Attributes

• Data this Metanode needs to
track for method calls

Dynamic Attributes

• Attributes that were not available
at creation

Now we know what the node is but we need something useful on it.
There are two ways we store data on Metanodes.
Class level and the other is object based.

Class attributes are every attribute our methods will expect on the node.

Dynamic attributes not created with the node.
The class controls how we check the dynamic attributes but they can change from
one instance to another.
Avoid declaring similar Metanode classes with only minimal attribute differences.
Example; Template node that takes a passed list of attributes for that instance to
track.

SEG; We have a Metanode with attributes we need a way to query and edit them.

30

Get and Set

#GDC19

• We need a way to get
and set attribute values

• Simple interfaces that
only requires an
attribute name

• Complex attribute
interactions may need
custom calls

Attributes can be a variety of types but as Python people we don’t want to worry
about that.

Attribute name gives us type information from attribute dictionaries.
We know the type, whether it’s multi.
One centralized place to validate data passed in and standardize the output.

More complex getters and setters might be required for some Metanodes but these
base calls will work in most cases.
Example; Two way message connection.

31

Message Connections

#GDC19

• Powerful method for tracking objects in Maya

• Dynamically updates with name changes

• Deals with name conflicts

• Stays valid after hierarchical changes

Powerful data tracking with Message connections

Updates with name changes

Works with name conflicts

Valid even after DAG hierarchical changes

32

#GDC19

Create() returned a class but in the future we will wrap the class with the
initialization.
Here in the init we verify the node and class match
Register the node and it’s UUID as properties of the class

33

Fast Setup

#GDC19

• New Node creation is
simple

• Add attributes to class
attributes and the
Metanode is ready

• Any complex methods
can be appended to the
class

Easy to add a new node

Update class attribute dictionary and the node is ready

Later we can add methods for saving bind pose.
Example; Tim’s face poses.

SEG; We’re ready to define a bunch of subclasses but how are we going to keep track
of all of them?

34

The Register

#GDC19

Custom meta class for tracking all Metanode classes in the imported code base.
There are mixed opinions online about creating your own meta classes, but we made
one and it has been very useful.

35

#GDC19

__metaclass__ is set as the Register.

All subclasses will inherit this metaclass.
No need to manually add new subclasses.

36

Custom Metaclass

#GDC19

• Register builds a the meta_type and
adds to the Register’s
__meta_types__.

• Any Metanode subclass will be
tracked and we can check this
meta_type to verify a node is valid.

Register builds a fully qualified path to our class and adds it as a key in meta_types
The value is set as the class object
Then the new class's meta_type property is set to the path.

Any subclass of Metanode imported is added to the Register’s __meta_types__
automatically.
Once collected it’s easier to validate and find the right Python class given a
meta_type.

37

Get Meta

#GDC19

With a Register we can
easily test the Metatype
of our node and get the
correct class.

With the Register we are able to build things like get_metanode.
This function automatically finds class to wrap our nodes in.

SEG; Register only responsible for tracking current Metanodes but we have another
class for maintaining them.

38

The Manager

#GDC19

The Manager
You give me too many slides to fill and I’ll start adding pictures of my kids.
He looks very serious about you updating your JIRA

SEG; So what does the the manager do?

39

Manager Responsibilities

#GDC19

There are five ways we need to
maintain our Metanodes. The

manager scrapes the scene and
tests for issues it can fix.

Responsible for maintaining our network nodes.
Keeps events for creating and destroying network nodes.
Class attribute track any network nodes it find in the scene.
On scene open checks nodes for five possible issues.

40

Update

#GDC19

• Most updates are only
required when the
node attributes change.

• Manager only enforces
updates on a set of
Metanodes referenced
in the config.py.

• There is a generic
update that tries to
migrate data to new
nodes.

Update, most important,
checks version and lineal.
Update function copies attributes, renames node Metanode, instantiates new
Metanode and tries to apply old data to new attributes.
Not all are automatically updated.
Example; Rig nodes.
If changes are too severe we will write a specific update call for that version.
Example Tag Nodes.

41

Relink

#GDC19

• Re-organizing
Metanode modules
requires fixing the meta
type attribute.

• Relink uses a dictionary
of old paths with their
new location as the
value.

Periodically we need to reorganize our code base.
If an old network node’s meta_type doesn’t match an imported python class it wont
be valid.
Fully qualified paths mean we have to relink a node if the package, module or class
change.
Manager updates meta_type from config dictionary.

42

Orphaned

#GDC19

• Sometimes nodes have
their assets deleted
from under them.

• Subclasses overwrite
is_orphaned call.

Base method on Metanode class is_orphaned() returns False.
Subclasses can overwrite this call to check the node is still being used.
Example; skeleton meta with no root
Manager queries all Metanodes for orphaned state and delete those returned True.

43

Deprecated

#GDC19

• When it’s time to retire
a Metanode we can put
it’s jersey up in the
rafters of our config file.

• Nodes with deprecated
Metatype will be
deleted.

Sometimes a Metanode is no longer useful.
If the Metanode no longer brings you joy, say thank you and deprecate it.
Delete the class and add it to deprecated list.
All nodes on deprecated list will be deleted.

44

That was only four

#GDC19

The Manager serves an important roll in keeping
scene nodes valid.

I’m getting to the fifth one, it gets its own chapter
Important take away there are a lot of ways to break your data.
Important that we systematize maintenance

SEG; Now for that fifth one I promised

45

Singleton

#GDC19

That’s the other kid.
He’s quite the singleton.

46

What’s a singleton?

#GDC19

What is this structural concept of a Singleton?
It’s a construct without peers.
An entity who’s completely unique without duplication.

SEG; In other words,

47

Beyoncé

#GDC19

All the singletons,

all the singletons.

It’s Beyoncé.
You can’t instantiate another Queen Bey, she’s not a mall Santa.
Sasha Fierce might not fit this metaphor

SEG; This structure gives us a singular authority for the scene

48

#GDC19

Here is our Singleton class which is a subclass of Metanode

The important call is instance() which defines how we get the correct network node.

We check the scene for a node with the name of the class.

If none exist a new singleton node is created
Class isn’t a singleton, the node is a singleton.

49

Singleton

#GDC19

• Imports can create
multiple singleton
nodes

There could be multiple Singleton nodes in the scene
Example; Artist scale check

50

Singleton

#GDC19

• Imports can create
multiple singleton
nodes

• The class call to
instance finds the
correct scene node

Here is where our instance call finds our correct node.
Wraps it in our class.
This is why it’s important to have a centralized way of finding our Singleton.

51

Singleton

#GDC19

• Imports can create
multiple singleton
nodes

• The class call to
instance finds the
correct scene node

• The manager cleans up
the scene

Here is the fifth way our Manager fixes up the scene.

52

Staying Single

#GDC19

A Singleton Metanode is useful for defining
global properties of a scene.

Singleton works as global scene data
Example; Active Actor, no disagreement

SEG; Those are our objects for data but now we need to tap into that well.

53

Listening for Signals

#GDC19

We have a lot of data in our Metanode system, but how do we expose that to our
GUI’s

SEG; My first book when learning Python was Maya Python for Games and Film, but
my second book

54

#GDC19

Was Practical Maya Programming with Python
By Robert Galanaksi, founder of Tech Artists dot Org
Chapter 5: Building GUIs for Maya
Separate your Maya scene code from the interface code.
I ignore this at my own peril.

SEG; So to support independent data models in our UI we build it into the Metanode
system

55

User Events

#GDC19

• Two API callbacks and
events created during
create_event.

• Other classes can
subscribe directly to a
Metanode for name
and attribute changes.

• Callbacks can be
removed with the
unsubscribe call from
any Metanode.

When Manager gets an API event for a newly created network node it calls the
create_event
Create_event generates user events for node names and attributes

Here are our currently supported subscriptions on the base Metanode class.
Any node attribute or name change will push out to these events.

We have one unsubscribe that uses the UUID and index tuple.
Node UUID if tracking multiple Metanodes.
Helpful that Metanode tracks attached callbacks and automatically cleans them up
on destruction.

SEG; Now let’s apply this to an interface

56

GUI Connection

#GDC19

• Nice GUI, is that a style
sheet bro?

We have our GUI.
It looks amazing, even docks correctly.

57

GUI Connection

#GDC19

• Nice GUI, is that a style
sheet bro?

• We have a Metanode
we want to connect two
meshes to.

We have an Actor network node we want to connect two export mesh assets to.

58

GUI Connection

#GDC19

• Nice GUI, is that a style
sheet bro?

• We have a Metanode
we want to connect two
meshes to.

• The GUI finds the
appropriate Metanode
and instantiates its
class.

The GUI finds node and wraps it in the Metanode
GUI subscribes to attribute change events from the Metanode class.

59

GUI Update

#GDC19

• Commands are
executed on the
Metanode but no
manual changes are
made to the GUI model.

We pass commands
Metanode connects to meshes.
We should not assume the data is set.

60

GUI Update

#GDC19

• Commands are
executed on the
Metanode but no
manuel changes are
made to the GUI model.

• User events are
signaled on the
Metanode which
update our GUI model.

Signals emitted
Subscribed model is updated.

SEG; This might seem overly elaborate, but it has modularity benefits.

61

Multi-Model Update

#GDC19

Structure works well when supporting many GUIs watching the same data.
If our GUIs updated their own data models they would also have to update any
future UIs, gets messy.

62

Multi-Model Update

#GDC19

Now with all GUIs subscribed to our Metanode they are all updated no matter how
the data was edited.

63

Signal Strength

#GDC19

Independent command and data streams can
be complicated to manage so it’s important to

support them in our Metanodes.

We want to make good GUI architecture easy to implement.
By standardizing Callback management on the Metanode class we encourage
modular UI

SEG; Now for the final chapter. You can taste that post-GDC beer already

64

Serialization

#GDC19

Cereal silos.
New pipeline avoids Maya referencing.
All Maya data can be dumped and instantiated in new scenes.

65

Mutable Nodes

#GDC19

• Tracking all attributes gives us an easy,
organized way to write all our data to JSON.

• Serialization gives us the ability to import
networks of complex Metanode structures
using serialization as a base.

Class defined attributes makes it easy to get data.

We can expand on the serialization system to save off entire networks of Metanodes
like rigs.
Instead of referencing we can deploy our rigs through script.

66

#GDC19

Base serialize call saves Core attributes.

Class and Dynamic are serialized based on their attribute types with serialize_attr

Return as JSON for saving to file or raw dictionary for scene editing.

67

#GDC19

Deserialization is a function outside of Metanode.
Serialization dictionary is passed and the meta_type is called from the Registry.
Saved attribute values are applied

68

Node Network

#GDC19

• Metanode networks
require holistic
deserialization.

• Rigging system creates
each node before
setting attributes.

Extend base serialization to networks
Rigs have a central rig Metanode with many connected components

We start by creating every node in the network.
Attributes are created but not set.

69

Node Network

#GDC19

• Metanode networks
require holistic
deserialization.

• Rigging system creates
each node before
setting attributes.

• After all nodes are
created, attribute
values are set to avoid
missing node
connections.

Once all nodes exist we can check for name conflicts.
Update data with any name changes
Set data

70

Free Data Plan

#GDC19

Metanode serialization expands the network
node platform. Any data in a scene can be easily

propagated.

Metanode serialization expands the possibilities of our data.
Serialized data could be pushed to other uses outside of Maya.
Serialization, example of how a Metanode standard gives us a foundation to build
on.

71

Conclusion

#GDC19

What did we learn today gang?

72

What did I say again?

#GDC19

• Teams should have a centralized method for
saving custom data in Maya.

• Metanodes can accomplish this by having a
standard, extensible format.

• It’s quick to stand-up new networks of data.

• Updates and clean-up are systematized with
support from the Manager.

Having a centralized approach to storing data in Maya saves time and sanity.
Team members have a common standard to write to.

The Metanode system extensible to many uses.

It’s very fast to create new Metanodes and start protyping.

Metanodes are maintainable and have a clear path for evolving with the project.

73

Repository

#GDC19

github.com/arenanet/metanode

meta
▪ __init__.py
▪ config.py
▪ core.py
▪ manager.py
▪ examples

▪ __init__.py
▪ actor.py
▪ rig.py
▪ skeleton.py

Remember to go check out the repository!

74

#GDC19

If you need Technical Artists in the Seattle area come talk to me about the many
talented TAs we recently had to let go from our team.

75

andrewchristophersen@gmail.com

@def_tech_andrew

Andrew on tech-artists.slack.com

#GDC19

If you want to ask question about Metanodes
Get at me these places

76

andrewchristophersen@gmail.com

@def_tech_andrew

Andrew on tech-artists.slack.com

#GDC19

Questions?

77

Congratulations
you made it!

#GDC19

Treat Yo Self

78

