
Artificial Stupidity
Computer Intelligence in video games

Aleksander Kauch
Lead game programmer

Content fueled gameplay programming
in Frostpunk

Who am I?

2

3

Frostpunk

4

■ Society survival

■ City builder

■ Survival game

■ Focused on society

■ Narrative heavy

The setup

5

■ Liquid Engine
◻ 11 bit’s own engine

◻ Developed since 2010

■ The team
◻ 5 gameplay programmers

◻ 5 engine/tools programmers

Challenges

6

■ Few references

■ Lots of research

■ Rapid prototyping

■ Fast iterations

■ Biggest project for 11 bit studios

Data driven architecture

7

■ Based on Entity Component System (ECS)

■ Flexible, easily expandable configuration

■ Content created by design and art teams

■ Programmers only provided tools

■ Architecture ready for many iterations and experiments

Without
data driven architecture

creating the unique society builder
would not be possible

Foundations

Requirements

10

■ Designer-defined entities

■ Quick reconfiguration

■ Sharing features between entity types

■ Scaling

Data structure

11

■ RTTI Classes
◻ Runtime type identification

◻ C++ class serializable into XML node or binary

◻ XML is used in editor, binary format is used in-game

Data structure

12

■ GUID (globally unique identifier)

◻ Automatically generated ID based on exact time of creation

◻ Has a fixed-size text form:

D2F63677-A6D3-42D3-A68C-C149166D2A0E

Data structure

13

■ Template
◻ File with RTTI Class defining an in-game object

◻ Identified by GUIDs

◻ Editor support

XML file RTTI
System

Template
object

Class
factory

In-game
object

...

Data structures

14

■ Template examples
◻ Entity template - defines in-game object type

◻ Component template - defines a component

◻ Mesh template - defines mesh and import data

◻ UI Recipe - UI Element / UI Screen definition

ECS Implementation

15

Move
System

ENTITYENTITYENTITYENTITY

Weapon
System
Container
System
Repair
System

COMPONENT

COMPONENT

COMPONENT

COMPONENT

COMPONENT COMPONENT COMPONENT

COMPONENT

COMPONENT

COMPONENT

ECS Implementation

16

■ State/Data kept in components

■ Logic implemented in systems

■ Systems can keep global state

■ Some features outside ECS (UI, Input...)

ECS Implementation

17

■ Components and component templates are RTTI Classes

■ Entity template has a list of component templates

■ Component keeps reference to its template object
◻ Const data kept in the template object

◻ Mutable data kept in the component object

ECS Implementation

18

■ One component of a type per entity
◻ Clean configuration

◻ Less configuration errors

■ One system per component type
◻ Single responsibility principle

◻ Simplifies architecture

ECS Implementation

19

■ No System / Component classes inheritance
◻ Consequence of one system per component type rule

◻ Bitmask IDs possible

◻ Expanding functionality via adding new component types

MoveComponent ID = 1 << 0

WeaponComponent ID = 1 << 1

RepairComponent ID = 1 << 2

Entity ComponentMask = 0x1

Entity ComponentMask = 0x3

Entity ComponentMask = 0x6

ECS Implementation

20

■ Component dependency
◻ Attribute RequireComponent<Type> marks component type as a

prerequisite

GeneratorComponent - RequireComponent<BuildingComponent>

■ Component initialization order
◻ Attribute AddAfterComponent<Type> marks component type that

WorkplaceComponent - AddAfterComponent<PlaceForAgentComponent>

■ Component Sets
◻ Designer-defined batches of components

◻ Contain components defining most used types of entities
e.g. buildings, citizens, resource piles

◻ Can be nested

◻ If duplicated - component definition from the highest level is used

ECS Implementation

21

Example component class

22

class GeneratorComponent : public ComponentImpl<GeneratorComponent,
 GeneratorComponentTemplate>

{
 DECLARE_PROPERTIES(GeneratorComponent, ComponentBase)
 {

DECLARE_ATTRIBUTES(Attr::RequireComponent<BuildingComponent>());
DECLARE_ATTRIBUTES(Attr::AddAfterComponent<HeaterComponent>());
DECLARE_PROPERTY(SteamGenerationUpkeep, 0);
DECLARE_PROPERTY(SteamPower, 0);
...

 }
...
Map<EntryLink<ResourceEntry>, int> SteamGenerationUpkeep;
float SteamPower = 0.0f;

friend class GeneratorSystem;
};

Architecture overview

Templates

Behaviour
trees

UI Recipes

Configuration
files

DATA

...

Appearance
System

AI System

ECS

Movement
System

...

Game
Events ...

HELPERS
Triggers

POI Systems

User Interface

Engine Core Renderer

OTHER

...

Controlling the flow

Requirements

25

■ Narration via in-game events

■ Some events scripted, some emerging from game state

■ Easy way to check game state elements

■ No redundancy in configuration

Configuration

26

■ Entry
◻ RTTI Class with GUID and readable name

◻ Used in configuration files to link configurations

◻ One “source” of entries per entry type

◻ Global EntryManager provide lists of available entries
- one manager per one entry type

◻ EntryLinks used to reference entries in another part of configuration

Configuration

27

ConfigFile_A

EntryList<FooEntry>

- Entry_1

- Entry_2

- Entry_3

- ...

EntryManager<FooEntry>

...
Entry_3

Entry_2

Entry_1

ConfigFile_B

EntryLink<FooEntry>

...

EntryLink<FooEntry>

...

EntryLink<FooEntry>

...

Game events system
■ “Scripts” configured in XML

■ Translated to C++ during load

■ No scripts interpreted in-game

■ Designed for quick prototyping but valid in final content

28

Game events system
■ Game Event

◻ Entry built from three lists of element types:
Triggers
Conditions
Effects

◻ Fully configurable by the design team

◻ With wide variety of elements it’s almost a programming language

29

Game events system
■ Triggers

◻ Registered for specific “incident” in-game
e.g.: specific time of day, death of a citizen, new technology ...

◻ When an in-game “incident” happens - the triggers fire

Game events system
■ Conditions (Boolean expressions)

◻ Evaluate to true or false

◻ Utilise custom helper classes that return game state values

◻ Take form of polish notation expression

Game events system

■ Effects
◻ Custom RTTI Classes that change game state

◻ They’re simply configurable C++ function calls

Game events system
■ Flow:

Trigger Conditions Effects

ECS
Systems

Game
state

Trigger
System

Game
Events Effect

Executor

33

Examples

34

◻ TRIGGER: Citizen died from starvation
CONDITION: > 30 deaths from starvation
EFFECT: Create manifestation

◻ TRIGGER: New sick citizen
CONDITION: > 10 sick citizens without medical care
EFFECT: Start quest to solve healthcare problem

◻ TRIGGER: Day 3, 12:00
CONDITION: No hunters’ huts
EFFECT: Create hint to construct hunters’ hut

Game events system

■ Contexts
◻ Events have an additional parameter - context Entity

◻ Triggers provide base context for the event

◻ Effects can take form of selectors that pick context

◻ Selectors have their own effect array and conditions (picking criteria)

Game events system

Game events system

37

■ Parts of this system were reused
◻ Conditions in requirements for research

◻ Effects in technologies and social laws

◻ Effects in hard decision choices

■ Entry system allowed creating libraries of predefined
conditions/triggers/effects

■ Useful debug tool - e.g. trigger firing on console command

Game events system

38

■ All of the game “flow” controlled
by the Game Events System

■ Powerful but can get very
complicated to configure

■ Needs better tool to simplify
the configuration

Game events system - scale

Game events system - scale

Game events system - scale

Defining Appearance

Requirements

43

■ Changing entity visuals depending on game state

■ Artists define visuals (obviously) and conditions

■ Bulk changes of conditions and visual elements

Appearance system

44

■ Buildings change visuals depending on game state
◻ Temperature

◻ Activity

◻ Policies

◻ Time of day

◻ ...

Appearance system

45

Appearance system

46

■ Appearance state
◻ String label, config entry

◻ Defined by designers or artists

◻ Added/removed by the game event or condition set

■ Building can have multiple active appearance states

Active; totalitarian building; during night

■

Appearance system

47

■ Some states need to be excluded for visuals , e.g.:

Building; during night; not under construction

■ Final visuals of the building depends on the combination of
appearance states

Appearance system

48

■ Visual elements (props) changed by appearance states:
◻ Mesh elements

◻ Lights / Textures

◻ Outlines / Shaders

◻ Animations

◻ UI Icons

◻ Sounds

◻ ...

Appearance system

49

■ Appearance overlay - simple change in props, e.g.:
◻ Visibility

◻ Animation start/stop

◻ Shader change

■ Appearance conditions - combination of appearance states
and negations
◻ Checked when appearance state list changes

■ When conditions match overlay is applied, if not it is removed

Example of appearance config

50

Closing

51

■ Data-driven architecture provided
◻ Designer-defined content

◻ Rapid prototyping

◻ Reusability of features

◻ Control for design and art teams

◻ Less work for programmers =)

■ ECS efficiently glued everything together

Q & A

52

aleksander.kauch@11bitstudios.com
www.facebook.com/Kauach

THANK YOU!
53

